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Abstract
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Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
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Phylogenetic birth-death models constitute a family of generative models of evolution. In these
models an evolutionary process starts with a single species at a certain time in the past, and the
speciations—splitting one species into two descendant species—and extinctions are modeled
as events of non-homogenous Poisson processes. Different birth-death models admit different
types of changes to the speciation and extinction rates.

The result of an evolutionary process is a binary tree called a phylogenetic tree, or phylogeny,
with the root representing the single species at the origin,  internal nodes speciation events, and
leaves currently living—extant—species (in the present time) and extinction events (in the past).
Usually only a part of this tree, corresponding to the evolution of the extant species and their
ancestors, is known via reconstruction from e.g. genomic sequences of these extant species.

The task of our interest is to estimate the parameters of birth-death models given this
reconstructed tree as the observation. While encoding the generative birth-death models
as computer programs is easy and straightforward, developing and implementing bespoke
inference algorithms are not. This complicates prototyping, development, and deployment of
new birth-death models.

Probabilistic programming is a new approach in which the generative models are encoded as
computer programs in languages that include support for random variables, conditioning on the
observed data, as well as automatic inference. This thesis is based on a collection of papers in
which we demonstrate how to use probabilistic programming to solve the above-mentioned task
of parameter inference in birth-death models. We show how these models can be implemented
as simple programs in probabilistic programming languages. Our contribution also includes
general improvements of the automatic inference methods.
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“Mathematics reveals its secrets only to those
who approach it with pure love, for its own beauty.”

— Archimedes
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Introduction

Welcome to the exciting world of probabilistic programming and phylogenetics!

Phylogenetic birth-death models are a family of rather simple models of evolu-
tion of species (or other taxonomic groups). Starting with a single species in the
past, they essentially model speciation events, when a parent species splits into
two descendant species, and extinction events, when the whole population of a
species dies out. Biologists use these models to estimate their parameters (such
as the speciation and extinction rates) based on a phylogenetic tree representing
the evolution of the currently living, extant, species. This tree can be inferred
from our knowledge about some of the extant species, e.g. their morphological
traits and genomic data. Estimation of the parameters is challenging due to the
fact that this tree is usually only a part of a complete tree that also includes the
evolution of (unknown) extinct species.

Birth-death models of evolution play an important role in statistical phyloge-
netics, yet the path from a new model idea to a software implementation ready
to be used by biologists is time-consuming and error-prone. Describing a new
model in the language of mathematics, deriving a bespoke inference algorithm,
and then implementing it, either in an existing software package, or creating a
new one, takes a lot of time and requires experts from several different areas.

Recent developments in probabilistic programming open up an exciting alterna-
tive aiming to shorten and simplify the whole process significantly: new models
can be expressed as short programs in probabilistic programming languages
with just a basic understanding of programming, and without deep knowledge
of the complex phylogenetic software packages or libraries. There is no need to
derive any bespoke inference algorithm for a new model (nor to implement it):
one of the main features of probabilistic programming languages is automatic
inference. From the user’s point of view, the inference should be as simple as
running the program.

During the last five years my colleagues from Uppsala University, KTH Royal
Institute of Technology and Swedish Museum of Natural History (as well as
other collaborators from abroad) and I have been working towards this goal, not
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only to demonstrate that this is indeed possible, but also to make the inference
for phylogenetic models fast and efficient.

This thesis is based on a collection of papers written during this exciting
time. It also includes a few introductory chapters: Chapter 1 (p. 11) and
Chapter 2 (p. 33) introduce probabilistic programming and birth-death models
of evolution. Chapter 3 (p. 49) links both topics together and demonstrates
how probabilistic programming and probabilistic programming languages can
be used in phylogenetics. It also provides a common thread connecting the
papers. The conclusion, including some ideas for the future work, is the
contents of Chapter 4 (p. 67).
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1
Probabilistic programming

1.1 Introduction

Let us start with a simple experiment: Take a die, roll it twice and add the
faces. The outcome of both throws, which we will denote by X1 and X2, are
random variables, and so is their sum S = X1+X2. It makes perfect sense to ask
questions like these: What is the probability that this sum is 2? Or 3? Or any
other possible value? Or said differently, what is the probability distribution of
the sum of the faces?

If you are reading this thesis, you probably know quite a lot about probability
and statistics, and might already have an idea about how to answer the questions
above. In either case, let us go through the solution together. The table below
shows all possible outcomes of X1 and X2 and their corresponding sum S. We
will assume that the die is fair, i.e., the probability of each face is the same. To
answer our questions, we just need to count the fractions of each possible value
of S in the table.

Outcome of X1

O
ut

co
m

e
of

X 2

2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12

For example, the probability of the sum being 8 (shown in bold) is 5/36 as there
are 5 combinations where S = 8 (namely (6, 2), (5, 3), (4, 4), (3, 5) and (2, 6))
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out of the 36 possible combinations. If we do this for all values of the sum we
get the distribution we are interested in:

s 2 3 4 5 6 7 8 9 10 11 12
P(S = s) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

This was quite a simple experiment, but how would we go around if we wanted
a computer to (automatically) determine this distribution? It is rather easy
to write a function (procedure, program) that can simulate the experiment in
any programming language that supports random numbers. For example, in
Python, such a function could look like this:

import random

def model():
die1 = random.randint(1, 6)
die2 = random.randint(1, 6)
return die1 + die2

Can we somehow use this function to calculate (an estimate of) the probability
distribution? We can call the function we just created “a huge number” of
times, and count how many times the function returns 2, 3, . . . , 12:

def main():
N = 10**5
dist = {}
for i in range(N):

s = model()
if s not in dist:

dist[s] = 0.0
dist[s] += 1/N

return dist

In the main function we called the model function 105 times and counted the
relative frequencies of all values returned from the function. Figure 1.1 shows
the resulting distribution as a bar plot, along with the true probabilities for all
values of the sum.

The approach of repeating an experiment to obtain an estimate of the probability
distribution of interest is known as the Monte Carlo method and it forms the
foundation for almost all methods we will use and develop in this thesis.

Now, let us make the experiment a bit more complicated. The die is rolled by a
friend and we can’t see the outcomes. After the experiment we are told that the
sum is less than 5. What can we say about the distribution of X1 conditioned
on this fact?

12 CHAPTER 1. PROBABILISTIC PROGRAMMING
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Figure 1.1: Result of the dice experiment. The gray bars represent the estimated probabilities,
the black lines the corresponding true probabilities.

Again, we can look at all possible combinations and eliminate those where the
sum S is greater than or equal to 5 (shown in gray):

Outcome of X1

O
ut

co
m

e
of

X 2

2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12

There are only 6 combinations that meet the observation, three of them with
X1 = 1, two with X1 = 2, and one with X1 = 3, leading to the following
conclusion:

x1 1 2 3 4 5 6
P(X1 = x1 |S < 5) 3

6
2
6

1
6 0 0 0

Before we return to the computer simulations, let us think a little bit about what
is happening while we are observing our friend do the experiment. Before we
get any information, we believe that the probability of each possible outcome
of X1 is 1/6—that is our prior belief. As soon we get to know that the sum
is less than 5, our belief about (the probability distribution of) X1 changes.
Well, our brains might not immediately calculate the exact probabilities, but
we can immediately understand that 4, 5 and 6 are impossible outcomes, i.e.,
P(X1 = 4|S < 5) = P(X1 = 5|S < 5) = P(X1 = 6|S < 5) = 0.

The process of updating the prior belief (that is, the belief before the observa-
tion) to the posterior belief (the belief after the observation) is called inference.
We looked at a very simple example with two dice, but in general, the inference
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for realistic problems might be rather difficult. Developing inference algo-
rithms is a time-consuming and error-prone process. It would be convenient
if we could just implement a generative model, i.e. a model that just simulates
the experiment, and then add statements about the observations, and run the
program to get the posterior distribution of interest (or some of its statistics).

Returning to our experiment with the dice, we would like to extend the model
function we wrote by just adding a single line stating that “the sum is less
than 5” (and returning the outcome of the throw instead of the sum):

def model():
die1 = random.randint(1, 6)
die2 = random.randint(1, 6)
observe(die1 + die2 < 5)
return die1

Probabilistic programming languages (PPLs) allows us to do exactly this. They
extend general purpose (deterministic) programming languages and provide

• support for random variables,

• conditioning on the observed data, and

• automatic inference.

In the existing PPLs the support for random variables is usually more ergonomic
than what we have seen in our code. For example, instead of

die1 = random.randint(1, 6)

we can very often see something like
die1 ~ DiscreteUniform(1, 6)

From the user’s point of view, a recipe for probabilistic modeling with a PPL
is very simple:

1. Write a generative model as a computer program.

2. Add observe statements.

3. Run the program to automatically do the inference.

But how does this automatic inference work? We will introduce some of
the algorithms later, but to offer some intuition already now, consider the
following trivial (and often rather inefficient) algorithm, known as rejection
sampling [62]. Again, we are going to call the model function many times, but
in the case when the boolean condition in the observe statement is not true, we

14 CHAPTER 1. PROBABILISTIC PROGRAMMING



2 31 4 5 6
0.0

0.2

0.4

Figure 1.2: Result of the dice experiment with conditioning on the sum being less than 5.
The gray bars represent the estimated posterior probabilities, the black lines the
corresponding true probabilities.

will return immediately and repeat the function call (and keep repeating until
the condition is eventually true). Python is not a probabilistic programming
language, but we can use (or rather misuse) exceptions to implement rejection
sampling:

class RejectionException(Exception):
pass

def observe(cond):
if not cond:

raise RejectionException

def main():
N = 10**5
dist = {}
for i in range(N):

while True:
try:

s = model()
break

except RejectionException:
pass

if s not in dist:
dist[s] = 0.0

dist[s] += 1/N
return dist

Running this program for our toy model results in a distribution shown in
Figure 1.2.

Such an approach obviously works only if the rejection ratio is fairly small. We
also need to be able to work with continuous random variables, since, after all,
most of the random variables in realistic problems are indeed continuous.

In the next section we will define probabilistic programming and PPLs more

1.1. INTRODUCTION 15



formally, go through a few more sample models, and show how they can be
implemented as simple programs in PPLs. Execution of probabilistic programs
can be modeled using a programmatic model, which is introduced in Section 1.3
(p. 22). In Section 1.4 (p. 24) we will turn our attention to automatic inference
and the algorithms supporting it, and go deeper into the sequential Monte Carlo
(SMC) based inference.

1.2 Basic concepts

As we have seen in the previous section, probabilistic programming is a new
programming paradigm that allows encoding a probabilistic model as a com-
puter program, and running the inference automatically, without the need to
implement a bespoke inference algorithm.

Probabilistic programming languages (PPLs) can be seen as extensions of
general-purpose deterministic programming languages with probabilistic con-
structs (such as defining random variables and conditioning on the observed
data) and automatic inference.

1.2.1 Defining and using random variables

By defining a random variable we inform the compiler or the interpreter about
the variable’s identifier (i.e., the name of the random variable) and the proba-
bility distribution of the random variable. We will use the following notation
in pseudocode:

x ∼ D(θ1, θ2, . . . )

Here, x denotes a random variable specified by a probability distribution D
and its parameters θ1, θ2, . . . . Note that the parameters might, and often will,
be expressions using other random variables defined in the program earlier. It
is important to realize that the distribution and the parameters specify the con-
ditional probability distribution of the random variable x given the previously
defined random variables.

How do PPLs store and work with random variables? The simplest way is to
represent them by random variates (i.e., particular outcomes of the random vari-
ables). In our illustrative examples in the previous section, we drew outcomes
of both throws from DiscreteUniform(1, 6) and stored these (integer) val-
ues in the (Python) variables die1 and die2. When returning the sum die1 +
die2, the program just used these stored variate values to calculate and return
the sum. Some PPLs even require the user to draw, or sample, a value from

16 CHAPTER 1. PROBABILISTIC PROGRAMMING



the distribution and to store it in a variable (representing the random variate)
explicitly. For example, consider the following snippet in WebPPL [23], a
simple JavaScript-based PPL that can even execute probabilistic programs in a
web browser1:

var dist = Gaussian({mu: 0, sigma: 1})
var x = sample(dist)

Other PPLs deal with random variables in a more advanced way. For example,
Birch [46], an object-oriented PPL transpiling to C++, represents random vari-
ables as objects with attributes for the specified distribution and its parameters.
Birch avoids sampling a particular value as long as it is possible by employing
a technique called delayed sampling [III]. We will return to it later, for now,
consider the following program demonstrating an interesting case where the
value of x is never even sampled:

x:Random<Real>;
y:Random<Real>;

x ~ Gaussian(0, 1);
y ~ Gaussian(x, 1);
stdout.print("y = " + y.value() + "\n");

When executing the program, Birch automatically exploits the conjugacy rela-
tionship between p(x) = N(0, 1) and p(y |x) = N(x, 1). When the value of y is
needed in order to print it to standard output, it is sampled from the marginal
distribution p(y) = N(0, 2). The distribution related to x is then updated based
on the sampled value of y, but since we do not need the value of x, it will never
get sampled.

Probabilistic programs can use the random variables as any other (determin-
istic) variables, including to control the flow of the execution in conditionals,
loops and recursion. Let us have a look at two examples; the first example
demonstrates using a random variable in the predicate of a conditional:

x ∼ N(0, 1)
if x > 0 then

y ∼ Exponential(x)
else

y ∼ Uniform(0, 1)
end if

The second example demonstrates how to use unbounded recursion to define
the geometric distribution:

1http://webppl.org
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function geometric(p)
x ∼ Bernoulli(p)
if x then

return 1
else

return 1 + geometric(p)
end if

end function

Stochastic branching and unbounded recursion make computationally universal
PPLs more expressive than probabilistic graphical models (PGM) [32]: all
models that can be expressed in the PGM framework can also be expressed
using computationally universal, or Turing-complete, PPLs, while the opposite
is not true.

1.2.2 Conditioning on the observed data

Probabilistic programming is closely related to Bayesian probabilistic model-
ing: some random variables are observed and we want to reason about the
(posterior) probability distribution of the remaining—unobserved or latent—
random variables given the values of the observed variables.

This is where the observe construct comes into play. Both the observed value
and the probability distribution of the observed random variable must be spec-
ified. In pseudocode we will use the following notation:

observe y ∼ D(θ1, θ2, . . . )

As an example, consider a simple linear Gaussian state-space model encoded
as a probabilistic program:

x0 ∼ N(0, 0.1)
for t ∈ {1, 2, . . . , 100} do

xt ∼ N(0.5xt−1, 0.1)
observe yt ∼ N(0.7xt, 0.1)

end for

Here, xt denotes the unknown (unobserved, latent) state at time t, and yt the
corresponding measurement.

Before we move on to the automatic inference, recall the example from the first
section, where we used observe(die1 + die2 < 5). We did not specify any
distribution here; we just used a simple predicate. This is however equivalent to

18 CHAPTER 1. PROBABILISTIC PROGRAMMING



observe true ∼ Bernoulli([die1 + die2 < 5])

The parameter is specified using the Iverson bracket [P]:

[P] =
{

1 if P is true,
0 otherwise.

1.2.3 Automatic inference

Let X denote all latent random variables in our model, Y all observed random
variables, and y the observed values.

For most problems, to implement a generative program (encoding the joint
distribution p(X,Y )) is simple. As we have seen above, we do not even need
PPLs to do so; any programming language with support for drawing random
numbers will suffice. We can run such a program multiple times to simulate
the model and draw samples from the joint distribution. We can then use these
samples to estimate the distribution or the expected value of any test function
with respect to this distribution.

However, changing the program to be able to sample from the posterior distri-
bution P(X |Y = y) in standard programming languages might be rather difficult
and involves finding (and possibly tailoring) a suitable inference algorithm or,
if we are unlucky, developing and implementing a completely new bespoke
inference algorithm.

In PPLs such a change is trivial. For example, consider a potentially biased coin
with unknown probability of heads π, and an experiment in which we throw
the coin 50 times and count the number of heads, encoded as the following
generative program:

π ∼ Uniform(0, 1)
c ∼ Binomial(50, π)

Now, how can we get the posterior distribution of π given that we have seen
28 heads? In PPLs, we only need to change the definition of the random
variable c to an observe:

π ∼ Uniform(0, 1)
observe 28 ∼ Binomial(50, π)

Running this program produces a sample from the posterior distribution. The
inference is automatic; we have not implemented any inference algorithm
anywhere in the program. This decoupling of the model and the inference is
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one of the main advantages of PPLs. Although it might sound like magic,
automatic inference is based on composing suitable general-purpose inference
algorithms, some of which we will cover later in this chapter.

Extending and developing new general inference algorithms and heuristics to
make automatic inference better (in terms of speed and variance of the estimated
quantities) are the subject of ongoing research.

1.2.4 Illustrative examples

Let us now look at a couple of models and their implementation in WebPPL [23].
First, let us return to the example with a coin from the previous paragraph:

var coinExperiment = function() {
var π = sample(Uniform({a: 0, b: 1}))
observe(Binomial({n: 50, p: π}), 28)
return π

}

Infer({model: coinExperiment, method: 'MCMC', samples: 100000})

The model itself is implemented as a function (coinExperiment) which is
passed together with the inference parameters (we use Markov chain Monte
Carlo (MCMC) as the inference method to collect 100000 samples) to the Infer
function. This function is responsible for running the inference and produces
the estimate of the posterior distribution for π (note the return statement at the
end of the coinExperiment function). If we run the program in a web browser,
WebPPL will also visualize the distribution:

0.2 0.3 0.4 0.5 0.6 0.7 0.8
π

0.0
0.50
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

D
en

si
ty

In the second and more advanced example we will demonstrate how easy it is
to implement Bayesian linear regression in WebPPL. Consider the following
model:

β0 ∼ N(0, 1),
β1 ∼ N(0, 1),
yn ∼ N(β0 + β1xn, 0.01)

20 CHAPTER 1. PROBABILISTIC PROGRAMMING



and the following measurements:

xn 1 2 3 4 5
yn 0.1993 0.1401 0.4304 0.6206 0.7807

The implementation of this model is straightforward, perhaps with the exception
of using the map function to process the measurements (WebPPL does not
support for-loops):

var observation = [
[1, 0.1993],
[2, 0.1401],
[3, 0.4304],
[4, 0.6206],
[5, 0.7807]

]

var regression = function() {
var β0 = sample(Gaussian({mu: 0, sigma: 1}))
var β1 = sample(Gaussian({mu: 0, sigma: 1}))
map(function(xy) {
var x = xy[0], y = xy[1]
observe(Gaussian({mu: β0 + β1*x, sigma: 0.1}), y)

}, observation)
return [β0, β1]

}

viz.heatMap(Infer({
model: regression, method: 'SMC', particles: 20000

}))

We use SMC-based inference (with 20000 particles) and visualize the distri-
bution of the parameters β0, β1 in the form of a heat map:

-0.30
-0.20

-0.10
0.00

0.10
0.20

0.30
β0

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

β
1

density

0 180

1.2. BASIC CONCEPTS 21



1.2.5 Existing probabilistic programming languages

We have so far seen a few examples of probabilistic programs in Birch and
WebPPL. As with deterministic programming languages, there exist many PPLs
to choose from, including the following languages (in alphabetical order): An-
glican [59], BayesDB [37], Biips [58], Birch [46], BLOG [40], BUGS [21],
Church [24], Edward [60], Figaro [52], Gen [10], Hakaru [49], JAGS [53],
LibBi [44], Probabilistic-C [51], Pyro [5], STAN [8], Turing.jl [19], Ven-
ture [38], WebPPL [23].

These probabilistic programming languages support various programming pa-
radigms, implement various automatic inference algorithms, and target various
scientific communities. Many of them are based on existing deterministic
languages and/or use existing libraries for machine learning.

For example, Birch, which most of the work included in this thesis is related
to, is an object oriented PPL transpiling to C++, and implementing several
sequential Monte Carlo (SMC) based inference algorithms.

1.3 Programmatic model

Before we look closer at some of the inference algorithms, let us describe an
execution model of probabilistic programs, based on the programmatic model
by Murray and Schön [46].

Let {Vi} denote a set of all (both latent and observed) random variables in a
probabilistic program. Note that this set is either finite or countably infinite.
In general we cannot make a one-to-one map from the definitions of random
variables and observes in the program to the variables in {Vi}. Consider, for
example, random variables in a loop or in a function that is called multiple
times. A definition of a random variable at a given location in the program
might correspond to multiple random variables in {Vi}.
When a program is executed, it encounters the random variables in a specific
order. This order might be different for different executions due to stochastic
branching (with the exception of the very first encountered random variable).
Let σ = (σ1, σ2, . . . , σ|σ |) denote a sequence of indices into the set {Vi} in
which the random variables are encountered during the execution. Further, let
vi denote a realization of the encountered random variable Vi. If Vi has not been
encountered during the execution, the corresponding variate vi has no value,
which we will denote by vi = ⊥.

We can define the execution state as a set x = {(i, vi)}i∈σ of tuples consisting
of indices of the variables encountered so far and their corresponding variates.

22 CHAPTER 1. PROBABILISTIC PROGRAMMING



At any time during the execution, the index κ of a random variable to be
encountered next depends on the current state x deterministically, i.e.

κ = Ne(x),

where Ne (for next) denotes this deterministic function. In case there are no
more random variables to be encountered, the Ne function will return ⊥.

Also the parameters of the distribution pκ associated with the corresponding
random variable Vκ (and given by the probabilistic program) depend on the
state deterministically, i.e.

Vκ ∼ pκ(Pa(x)),

where Pa (for parents) denotes this deterministic function.

Once Vκ has been realized, κ is appended to the sequence σ, and the current
state is updated to x ∪ {(κ, vκ)}.
The joint probability distribution of yet unencountered random variables, given
the current state can be stated recursively [II]:

p({vi}i<x |x)

=


pκ(vκ | Pa(x)) × p({vi}i<x∪{(κ,vκ )} |x ∪ {(κ, vκ)}) if κ , ⊥,
1 if κ = ⊥ ∧ ∀i < x : vi = ⊥,
0 otherwise,

where κ = Ne(x) and i ∈ x (resp. i < x) means that there exists (resp. does
not exist) a pair in x whose first element is i. The first case is an application
of the chain rule, while the second and third case cover the situation where
there are no more random variables to encounter (in that case each member of
{vi}i<x must be ⊥). The joint distribution of all random variables encoded by
a probabilistic program is given by p({vi}|�).
Let γ = (γ1, γ2, . . . , γT ) denote a sequence of indices of the observed variables
corresponding to the observations y1, y2, . . . , yT . The goal of the inference is
to determine (estimate) the posterior distribution

p({vi}i<γ |{(γt, yt )}Tt=1).

We will assume that each execution encounters all observed variables and in
the same order (given by γ), and, for the sake of keeping the algorithms simple,
that the last observed variable is also the very last encountered random variable.
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1.4 Sequential Monte Carlo based inference

1.4.1 Introduction

Automatic inference in PPLs is based on inference algorithms that were orig-
inally developed for other types of models (for example, state-space models).
Exact inference algorithms, such as Kalman filtering [30] or enumeration (it-
erating through all possible outcomes), are methods suitable only for a small
class of programs.

On the other hand, approximate and evaluation based inference methods, such
as Monte Carlo methods and variational inference (e.g. [61, 63]) as well as
combinations of these methods (e.g. [48]), are easily applicable to a much
larger class of programs. Monte Carlo methods cover a huge family of al-
gorithms, including Metropolis–Hastings algorithm [39, 26], pseudo-marginal
Metropolis–Hastings algorithm [1], Gibbs sampling [20], Hamiltonian Monte
Carlo (HMC) [50], and sequential Monte Carlo (SMC) [14, 13].

1.4.2 Monte Carlo integration

Monte Carlo integration (e.g. [7]) is a method of estimating the expected value
of a test function h(x) of a random variable2 x ∼ p(x), i.e.

I = Ep[h(x)] =
∫

h(x)p(x)dx.

Under the assumption that we can sample from p(x) we can draw N samples
{xn}N

n=1, and estimate the expected value using the following estimator:

ÎN =
1
N

N∑
n=1

h(xn).

The law of large numbers ensures that

lim
N→∞

ÎN = I with probability 1,

and the central limit theorem ensures that
√

N(ÎN − I) → N(0, σ2) in distribution,

where σ2 = varp h(x).

2Analogously to the notation used in probabilistic programs, we will usually use small letters
to denote random variables from now on. We will also assume that continuous random variables
admit probability density functions.
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1.4.3 Rejection sampling

What can we do if we cannot sample from p(x)? Rejection sampling [62],
which we have used in the first section, is one of the options we have. Assume
that

• p(x) can be evaluated point-wise for all x, and that

• there exists another distribution q(x), which we will call the proposal
distribution, that we can both sample from and evaluate point-wise, and
such that

p(x) ≤ Mq(x)

for some M ∈ R and all x.

We can get samples from p(x) using the following algorithm (rejection sam-
pling):

1. Sample x from the proposal distribution q(x).

2. Sample u from the uniform distribution on (0, 1).

3. If

u <
p(x)

Mq(x),

accept x as a sample from p(x), otherwise go back to step 1.

The obvious disadvantage is that it might be difficult to find a proposal q(x) that
ensures low rejection rate. The problem gets more prominent with increasing
dimension: the rejection rate grows exponentially with the dimension of the
distribution (this is sometimes referred to as the curse of dimensionality).

1.4.4 Importance sampling

Unlike rejection sampling, importance sampling [25] does not reject any of the
proposed samples. Assume that

• we can evaluate p(x) point-wise up to the proportionality, i.e. we can
evaluate

p̃(x) = Z p(x)

point-wise for all x, where Z is a (possibly unknown) normalization
constant, and
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• there exists another distribution q(x) that we can both sample from and
evaluate point-wise, and such that

q(x) = 0⇒ p(x) = 0,

or in other words, that the support of p(x) is a subset of the support of
q(x).

The expected value of h(x) with respect to p(x) can be rewritten as follows:

Ep[h(x)] =
∫

h(x)p(x)dx =
1
Z

∫
h(x) p̃(x)

q(x)︸︷︷︸
w(x)

q(x)dx =
1
Z
Eq[h(x)w(x)].

The function w(x) = p̃(x)/q(x) is called the importance weight function. The
normalizing constant Z is given by

Z =
∫

p̃(x)dx =
∫

p̃(x)
q(x)q(x)dx =

∫
w(x)q(x)dx.

Both the expected value and the normalizing constant can be estimated using
Monte Carlo integration. The following algorithm summarizes the estimation
of the expected value of a test function using importance sampling:

1. Draw N samples {xn}N
n=1 from the proposal distribution q(x).

2. Calculate the importance weights wn = p̃(xn)/q(xn) for n = 1, . . . , N .

3. Estimate the expected value as follows:

Ep[h(x)] ≈
∑N

n=1 w
nh(xn)∑N

n=1 w
n
.

1.4.5 Importance sampling for state-space models

Consider a state-space model of a discrete-time stochastic process, where the
state xt at time t depends only on the state xt−1 at the previous time step t − 1,
and xt can only be observed via a random variable yt that depends only on xt
(see the graphical representation depicted in Figure 1.3).

The joint distribution of this model is given by

p(x1, x2, . . . , xT , y1, y2, . . . , yT ) = p(x1)p(y1 |x1)
T∏
t=2

p(xt |xt−1)p(yt |xt ).
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x1 x2 · · · xT

y1 y2 yT

p(x2 |x1) p(x3 |x2) p(xT |xT−1)

p(y1 |x1) p(y2 |x2) p(yT |xT )

Figure 1.3: Graphical representation of a state-space model.

How can we use importance sampling to estimate the expected value of a test
function with respect to the posterior distribution p(x1, x2, . . . , xT |y1, y2, . . . , yT )?
If we use

q(x1, x2, . . . , xT ) = p(x1)
T∏
t=2

p(xt |xt−1)

as the proposal distribution, the importance weight function is given by

w(x1, x2, . . . , xT ) =
p(x1)p(y1 |x1)

T∏
t=2

p(xt |xt−1)p(yt |xt )

p(x1)
T∏
t=2

p(xt |xt−1)
=

T∏
t=1

p(yt |xt ).

The form of this function allows us to calculate the importance weights in
a sequential manner: for each sample xn = (xn1 , x

n
2 , . . . , x

n
T ) we simulate the

Markov chain, starting with sampling

xn1 ∼ p(x1),

and then sampling xnt based on xn
t−1 in a loop:

xnt ∼ p(xt |xnt−1).

The corresponding importance weight can be calculated iteratively, starting
with wn ← 1 and updating the weight after sampling xnt at each time step:

wn ← wnp(yt |xnt ).

Sequential importance sampling, which is the name for importance sampling
with the sequential calculation of importance weights, is one of the infer-
ence methods used in probabilistic programming languages. Recalling the
programmatic model we introduced in Section 1.3 (p. 22), an execution of a
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probabilistic program can be modeled as a state-space model, where the latent
state xt corresponds to the execution state at the time of processing the t-th
observe, corresponding to the t-th observed random variable yt .

Sampling from the above-mentioned proposal distribution means nothing else
than running the program and sampling values of the unobserved random
variables encountered during the execution. The importance weights are cal-
culated by multiplying the likelihoods of the observed values with respect to
the sampled values (realizations) of previously encountered random variables.
Algorithm 1.1 summarizes sequential importance sampling for probabilistic
programming. The Propagate(x) function (Algorithm 1.2) resumes the exe-
cution of the program from the state x and continues running the program until
it reaches the next observe.

Algorithm 1.1: Sequential importance sampling for probabilistic programming.

1: for n = 1, . . . N do
2: xn ← � ▷ Initialize the n-th execution of the program

3: wn ← 1
4: end for
5: for t = 1, . . .T do
6: for n = 1, . . . N do
7: xn ← Propagate(xn) ▷ Resume the n-th execution until it reaches next observe

8: wn ← wnpγt (yt | Pa(xn))
9: xn ← xn ∪ {(γt, yt )}

10: end for
11: end for
12: for n = 1, . . . N do
13: hn ← h(xn) ▷ Calculate the value of the test function of interest

14: end for
15: E[h] ≈ ∑

n w
nhn/∑n w

n

Algorithm 1.2: The Propagate function.

1: function Propagate(x)
2: κ ← Ne(x)
3: while k < γ do ▷ While the next random variable to encounter is not observed

4: v ∼ pκ(Pa(x)) ▷ Sample the random variable

5: x ← x ∪ {(κ, v)} ▷ Add the random variable to the state

6: κ ← Ne(x)
7: end while
8: return x
9: end function

28 CHAPTER 1. PROBABILISTIC PROGRAMMING



0

0.1

0.2

0.3

Particle

N
or

m
al

iz
ed

w
ei

gh
t

Figure 1.4: Demonstration of the weight degeneracy problem. See the description in the text.

Unfortunately, sequential importance sampling suffers from a problem known
as weight degeneracy that limits its application: as t increases, the number of
samples with extremely small normalized weights (the weights divided by their
sum) increases. Eventually, a single sample will have the normalized weight
approaching 1 and all remaining samples will have the normalized weights
approaching 0. Figure 1.4 demonstrates the problem by showing the weights of
1000 samples for the linear Gaussian state-space model we used as an example
on page 18 at time t = 100.

Note that this problem does not mean that sequential importance sampling is
not useful, nor that it should not be used at all. For example, inference com-
pilation [33], combining sequential importance sampling and neural networks,
has been successfully used in probabilistic programming inference.

1.4.6 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods, also known as particle filters, ad-
dresses the weight degeneracy by resampling the samples, often denoted as
particles, at certain times. The bootstrap particle filter (BPF), the simplest of
the SMC methods, resamples the particles at each time step.

Extending the notation from the previous paragraph, let St = {(xnt ,wn
t )}Nn=1

denote the particle set at time t. The initial set S1 is constructed by sampling
the state

xn1 ∼ p(x1),

for each of the N particles, and calculating the corresponding weights

wn
1 = p(y1 |xn1 ).
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To propagate the particles from time t − 1 to time t, we construct the set
St = {(xnt ,wn

t )}Nn=1 by following these steps for each particle:

1. Resampling—selecting one of the particles from St−1 with probabilities
proportional to their weights (at time t − 1), identified by the ancestor
index an

t :

an
t ∼ Categorical({wm

t−1}
N
m=1).

For the sake of brevity in the notation, we allow the categorical distribu-
tion to be parameterized with unnormalized probabilities.

2. Propagating the selected particle to the next time step:

xnt ∼ p(xt |xa
n
t

t−1)

3. Weighting the propagated particle:

wn
t = p(yt |xnt )

Note that this procedure (probabilistically) discards particles with small weights,
and that particles with high weights are likely to be selected and propagated to
the next time step multiple times.

Once the final set ST has been constructed, we can use its particles and their
weights to estimate the expected value of a test function of interest. To estimate
the normalizing constant Z we need to use the weights from all time steps:

Ẑ =
T∏
t=1

1
N

N∑
n=1

wn
t .

This estimator is unbiased (e.g. [12]), which allows us to use the BPF (and
other SMC methods) in exact approximation methods (such as particle Markov
Chain Monte Carlo).

Algorithm 1.3 shows how the bootstrap particle filter (BPF) is used for auto-
matic inference in PPLs. The Propagate function (Algorithm 1.2, p. 28) is the
same as before. The biggest challenge when implementing this algorithm in
probabilistic programming languages is related to handling of multiple concur-
rent executions: as we have mentioned above, a single particle might be chosen
several times during resampling, which means that the inference engine needs
to be able to copy, or clone, running executions. There are several strategies
how to handle this efficiently, including using continuation-passing style (CPS)
(e.g. [4]) or copy-on-write mechanisms (e.g. [45]).
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Algorithm 1.3: Bootstrap particle filter (BPF) for probabilistic programming.

1: for n = 1, . . . N do
2: wn

0 ← 1
3: xn0 ← � ▷ Initialization

4: end for
5: for t = 1, . . .T do
6: for n = 1, . . . N do
7: an

t ∼ Categorical({wm
t−1}

M
m=1) ▷ Resampling

8: xnt ← Propagate(xa
n
t

t−1) ▷ Propagation

9: wn
t ← pγt (yt | Pa(xnt )) ▷ Weighting

10: xnt ← xnt ∪ {(γt, yt )}
11: end for
12: end for
13: for n = 1, . . . N do
14: hn ← h(xnT )
15: end for
16: E[h] ≈ ∑

n w
n
T hn/∑n w

n
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Figure 1.5: Path degeneracy problem. See the description in the text.

Although particle filters do not suffer from the weight degeneracy problem,
they do suffer from a problem known as path degeneracy (e.g. [2]). Figure 1.5
illustrates the problem for a state-space model with one dimensional state.
The plot on the left shows the states of all particles at all time steps. The lines
visualize the ancestry history connecting the states of all particles {xnt } at time t
to the states of their ancestors {xa

n
t

t−1} at time t − 1. The plot on the right shows
the complete ancestry paths of the particles at the very last time step. Note that
for t ≤ 6 all paths coalesce. In the context of probabilistic programming, this
corresponds to a situation where all particles will have the same values of the
random variables sampled early in the program.

To mitigate the path degeneracy problem, more advanced SMC methods do not
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resample at each time step. Common practice is to use the effective sample
size (ESS), given by

ESS =
(∑n w

n
t−1)

2∑
n(wn

t−1)2
,

and resample only if the ESS drops below a chosen threshold (e.g. N/2). If the
ESS is above the threshold, no resampling takes place and the ancestry indices
are set deterministically: an

t = n. The problem might be further mitigated by
using different methods of sampling the ancestry indices, including stratified
and systematic resampling (e.g. [47]).

Despite the path degeneracy problem, the bootstrap particle filter and other
SMC methods are well established as automatic inference engines used in
PPLs. The propagation and weighting steps are embarrassingly parallelizable,
and can run on separate CPUs, GPUs or cluster nodes.
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2
Birth-death models of evolution

2.1 Introduction

In 1859 Charles Darwin in his influential work On the Origin of Species [11]
introduced the idea that all species have descended from one “primordial form”,
and that species evolve through natural selection and can split into separate
lineages—a process known today as speciation (the term itself was coined first
in 1906 by Orator F. Cook [9]). Together with extinction, when a species dies
out, these ideas constitute the foundation of the theory of evolution, including
phylogenetics, which focuses on the inference of the evolutionary history of
species (and other taxonomic groups) and the relationships between them.

In this chapter we will introduce phylogenetic birth-death models, a family of
continuous-time stochastic models of evolution in which the state, represented
by all species living at a given time, can change in two possible ways:

• speciation event (representing birth), when one species splits into exactly
two descendant species, and

• extinction event (representing death), when a species dies out.

The evolutionary process starts with a single species at some time torig > 0 in
the past. A species undergoes a speciation after an exponentially distributed
waiting time with the speciation rate λ, and goes extinct after an exponentially
distributed waiting time with the extinction rate µ. These rates are inherited
from the parent species at the speciation events (we will therefore also refer
to these rates as per-lineage rates). In other words, starting at the origin, the
speciation and extinction events follow a Poisson process with per-lineage rates
λ and µ, and this process is “duplicated” at each speciation. Both descendants
continue to follow their own independent processes. The speciation and extinc-
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tion rates do not necessarily remain constant over time. In general, we expect
that these rates may be subject to continuous or sudden changes that might
affect a single species, but also a group of species or all species (e.g. in a mass
extinction).

A couple of things require an explanation. First, we have used positive time
for events in the past. Phylogeneticists often use before present (BP) time to
denote how long ago something happened, for example, 8 Ma ago (Mya or
mya are used as well) means 8 million years ago. There is a subtle difference
between units of absolute time and relative time (i.e. duration), for example,
8 Ma (without “ago”), 8 Myr or 8 myr refer to a duration of 8 million years.
Second, speciations are processes that take long time, rather than sudden events.
However, considering the time scale of evolution, regarding speciations and
extinctions as instantaneous events is a justified simplification.

2.2 Complete and surviving trees

The result of a birth-death process (also called a diversification process) can be
represented as a binary tree called a phylogenetic tree, or simply a phylogeny.

Its root represents the initial species at the time of origin torig; internal nodes
represent speciation events; and leaves represent extinction events (if in the past,
t > 0) and currently living—extant—species (if in the present time, t = 0).
The edge length is defined as the difference between the times of the connected
nodes.

Figure 2.1a shows an example of a complete tree, representing the evolution
of both the extant and extinct species. Note that the x-axis represents the
time. Figure 2.1b depicts the corresponding extant tree, representing only
the evolution of the extant species and their ancestors, with their most recent
common ancestor (MRCA) at the root.

An example of a real surviving tree representing the evolution of cetaceans
(whales, dolphins and porpoises) [57] is shown in Figure 2.2 (p. 36). Note
that this tree is labeled—each extant species has a name. Surviving trees for
taxonomic groups of interest are reconstructed from available data on the extant
species, such as the genome sequences. Our goal in this thesis is to perform
Bayesian inference of the model parameters given these reconstructed trees.

Let us introduce some necessary terminology: we will say that a speciation is
observed if both descendants are ancestors of extant species, and unobserved
or hidden otherwise. In Figure 2.1 we have used black circles to denote the
observed speciations and gray circles to denote the unobserved ones.
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Figure 2.1: Example of a complete tree and its corresponding surviving tree.
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Figure 2.2: Extant phylogeny of cetaceans. Time axis in Mya.
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Figure 2.3: Per-lineage rates in the CRBD model.

Similarly, we will say that a subtree of a complete tree is unobserved or hidden
if it does not include any extant species.

Given a complete tree, the corresponding surviving tree can be obtained by
pruning: the nodes of the surviving tree are simply the observed speciations
and the extant species; an edge (also called a branch) in the surviving tree
means that there exists a path between the corresponding nodes in the complete
tree that can only go through unobserved speciations. In Figure 2.1a (p. 35) we
have marked these paths by thick lines.

2.3 Constant-rate birth-death model

The constant-rate birth-death (CRBD) model [16] is the simplest diversification
model. As the name reveals, both the speciation rate λ and extinction rate µ
are constant over time (Figure 2.3).

The generative probabilistic program for the CRBD model is shown in Algo-
rithm 2.1 (p. 38). The Crbd function accepts the time of origin torig as well
as the rates λ and µ, and returns a complete tree as a recursive data struc-
ture of the NonEmptyTree type. This type, defined at the beginning of the
program (lines 1–2), uses the constructors Extant, Extinction and Speciation
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Speciation(0.1,
Speciation(0.3,

Extant(0.2),
Extinct(0.15)),

Extant(0.5))

Figure 2.4: Example of a simple tree and its data representation.
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Algorithm 2.1: Generative constant-rate birth-death model.

1: type NonEmptyTree = Extant(Real) | Extinction(Real) |
2: Speciation(Real, NonEmptyTree, NonEmptyTree)

3: function Crbd(t, λ, µ)
4: ∆ ∼ Exponential(λ + µ)
5: if ∆ > t then
6: return Extant(t)
7: end if
8: s ∼ Bernoulli (λ/(λ + µ))
9: if s then

10: return Speciation(∆, Crbd(t − ∆, λ, µ), Crbd(t − ∆, λ, µ))
11: else
12: return Extinction(∆)
13: end if
14: end function

representing different types of nodes. An example of a simple tree and its data
representation is depicted in Figure 2.4 (p. 37). The first parameter of each
constructor represent the length of the edge between the node and its parent;
the second and third parameters of Speciation represent the subtrees. Also the
complete tree in Figure 2.1a (p. 35) was generated using this algorithm with
t = 2, λ = 1, and µ = 0.5.

Let us go through the Crbd function in more detail: We draw a waiting time ∆
until the next event (be it a speciation or an extinction) from an exponential
distribution with rate λ+µ (line 4). If the waiting time is longer than the starting
time t, the species has survived to the present time, and we return Extant(t)
(line 6). Otherwise we decide if the event is a speciation (rather than an
extinction) by a draw from the Bernoulli distribution with probability λ/(λ+ µ)
(line 8). If so, we call the Crbd function twice—once for each descendant—to
generate the subtrees starting at time t−∆, and return a Speciation node using∆
and both subtrees as parameters (line 10). If not, we return Extinct(∆) (line 12).

Recall the first chapter; it is the possibility of unbounded recursion in com-
putationally universal probabilistic programming languages that allowed us to
encode the generative CRBD model as a very simple probabilistic program.

We should mention here that there also exist pure birth models, that is, models
with no extinction events. For example, the constant-rate birth (CRB) model,
also known as the Yule model [64], is the simplest pure birth model with
constant speciation rate. We will however consider such models as special
cases of birth-death models with the extinction rate µ set to 0.
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λ0ez(torig−t) µ0 µ0ez(torig−t)

λ0ez(torig−t) µ0 µ0ez(torig−t)

λ0ez(torig−t) µ0 µ0ez(torig−t)

λ0ez(torig−t) µ0 µ0ez(torig−t)

Figure 2.5: Per-lineage rates in the presented time-dependent birth-death model.

2.4 Selected non-constant-rate birth-death models

In this section we relax the assumption of the speciation and extinction rates
being constant, and present a few models that we have been using in our exper-
iments, and that allow continuous and/or sudden changes in the diversification
rates.

2.4.1 Time-dependent birth-death models

Kendall [31] extended the CRBD model by allowing the speciation and ex-
tinction rates to be specified as functions of time. For example, consider the
following function for the speciation rate:

λ(t) = λ0ez(torig−t),

where λ0 is the speciation rate at torig, and z is the trend parameter controlling
how quickly the speciation rate might increase (when z > 0) or decrease (when
z < 0). Choosing this particular form for the speciation rate is motivated
by the empirical finding that diversification rates often slow down over time
(e.g. [41]).

For the extinction rate we can consider two variants:

1. Keeping the extinction rate µ constant over time:

µ(t) = µ0.

2. Keeping the turnover µ(t)/λ(t) constant over time:

µ(t) = µ0ez(torig−t),
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Figure 2.6: Per-lineage rates in the LSBDS model.

where µ0 is the extinction rate at torig.

Figure 2.5 (p. 39) summarizes the rates for both variants.

2.4.2 Lineage-specific birth-death-shift model

The lineage-specific birth-death-shift (LSBDS) model by Höhna et al. [27]
extends the CRBD model by introducing diversification-rate shift events. Like
speciation and extinction events, also the shift events are related to a spe-
cific lineage (see Figure 2.6) and model sudden changes of the speciation and
extinction rates.

Specifically, shift events follow a Poisson process with per-lineage rate η. Let
λ0 and µ0 denote the initial speciation and extinction rate at the origin. At the
i-th shift event the target species switches to a new process with the speciation
and extinction rates drawn from the a priori chosen base distributions pλ and
pµ:

λi ∼ pλ,

µi ∼ pµ .

At speciation events both descendants continue to follow the parent’s process.

2.4.3 Bayesian analysis of macro-evolutionary mixtures

Bayesian analysis of macro-evolutionary mixtures (BAMM) by Rabosky [54]
admits both exponentially increasing or decreasing speciation rates and rate
shifts. The original model has been criticized in phylogenetic literature for its
shortcomings by Moore et al. [42] and we follow their reinterpretation of the
model.
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Figure 2.7: Per-lineage rates in the BAMM model.

Let λ0, µ0 and z0 denote the initial values of the speciation rate, the extinction
rate and the trend parameter at the origin ζ0 = torig. The shift events follow
a Poisson process with per-lineage rate η. At the i-th shift event, occurring at
time ζi, the target species changes to a new process (identified by i) with the
parameters λi, µi and zi drawn from the a priori chosen base distributions pλ,
pµ and pz :

λi ∼ pλ,

µi ∼ pµ,

zi ∼ pz .

The speciation and extinction rates for a species following the process i are
given by

λi(t) = λiezi (ζi−t),
µi(t) = µi .

Figure 2.7 illustrates rate changes allowed by this model.

2.4.4 Cladogenetic diversification rate shift models

The cladogenetic diversification rate shift (ClaDS) models by Maliet et al. [36]
are three models in which the speciation rate changes after each speciation
event and remains constant until the next one. Each descendant draws its new
speciation rate from a log-normal distribution:

log λ ∼ N(log(αλp), σ2),
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Figure 2.8: Per-lineage rates in the ClaDS models.

where λp is the speciation rate of the parent species, α and σ2 are the model
parameters modeling the trend and noise related to the speciation rate (Fig-
ure 2.8).

The three models differ in how they model the extinction rate:

• ClaDS0 does not allow any extinctions (µ = 0),

• in ClaDS1 the speciation rate µ is constant for all species, and

• in ClaDS2 the turnover ϵ = µ/λ is constant for all species.

2.4.5 Birth-death models with state

An important class of phylogenetic birth-death models are models with state.
The main idea behind these is associating species with a state variable (for
example to indicate if a species is herbivore or carnivore), and letting the
speciation and extinction rates depend on this state.

In the binary state speciation and extinction model (BiSSE) by Maddison et
al. [35] the speciation and extinction rates depend on a binary state s ∈ {0, 1},
but otherwise remain constant over time: λ0 and µ0 for s = 0, and λ1 and µ1 for
s = 1. The state of a species is inherited at speciation events. The state changes
at rate ς01 when switching from state 0 to state 1, and ς10 when switching from
state 1 to state 0 (Figure 2.9). The states are typically assumed to be observed
for some or all of the extant species.

The BiSSE model inspired a lot of similar models, such as MuSSE (multiple
state speciation and extinction model) [18], QuaSSE (quantitative state specia-
tion and extinction model) [17] and GeoSSE (geographic state speciation and
extinction model) [22].
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Figure 2.9: Per-lineage rates in the BiSSE model.

2.5 Bayesian inference of the model parameters

Let us now return to the inference problem. We are interested in inferring the
parameters of the model based on the observed reconstructed (surviving) tree.
As mentioned in the previous section, for the models with state, the observation
might also be annotated with the state for a subset of the extant species.

Let θ denote the parameters of the model, and T the reconstructed tree. We
assume that T is known without any error. Further, let p(θ) denote the prior dis-
tribution for the parameters θ. Our goal is to estimate the posterior distribution
for the parameter set θ given the observed tree T :

p(θ |T) = p(T |θ)p(θ)
p(T) ,

where p(T |θ) denotes the likelihood of the observed tree T given the parame-
ters θ, and p(T), the marginal likelihood (also called the model evidence), is
given by

p(T) =
∫

p(T |θ)p(θ)dθ.

One of the challenges we need to deal with is that, apart from a few of the
simplest models, neither the posterior distribution nor the likelihood can be
expressed in a closed form. In the next section we will show how to derive
the likelihood for the CRBD model, which is one of these simple excep-
tions. Existing phylogenetic software, such as MrBayes [28], BEAST [15],
BEAST 2 [6], RevBayes [29], RPANDA [43] or Diversitree [18], either im-
plement only the models with analytical solutions or approximate the likeli-
hood function e.g. by numerically solving differential equations describing the
model, and use Markov chain Monte Carlo (MCMC) methods to sample from
the posterior distribution.
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In the next chapter, we will demonstrate how probabilistic programming with
SMC based inference can be used to draw samples from the posterior distribu-
tion as well as to estimate the marginal likelihood p(T) without bias. This is
needed, for example, in analyses based on pseudo-marginal algorithms and for
the model comparisons with Bayes factors.

2.6 Likelihood function for the CRBD model

As we have mentioned above, the constant-rate birth-death (CRBD) model is
one of the few exceptions where we can express the likelihood of the observed
tree in a closed form. In this section we derive the likelihood function, show
the difference between the likelihood of an unlabelled oriented tree and the
likelihood of a labelled unoriented tree, and conclude with a couple of possible
approaches to dealing with an unknown time of origin.

Let us start with the extinction probability—the probability that an evolutionary
process starting with a single species at time t goes extinct, or said differently,
the probability that none of its ancestors survives to the present time.

For the sake of brevity, we will omit conditioning on θ = (λ, µ) in the notation.
Let p0(t) denote the extinction probability. This probability is a solution of the
following differential equation:

dp0(t)
dt

= µ + λp0(t)2 − (λ + µ)p0(t),

with the boundary condition p0(0) = 0.

To show that, let us consider what events can occur between t +∆t and t, where
∆t → 0:

• an extinction event with probability µ∆t +O(∆t2),

• a speciation event with probability λ∆t +O(∆t2), leading to two descen-
dants, each going extinct with probability p0(t) +O(∆t),

• no events with probability 1 − (λ∆t + µ∆t +O(∆t2)),

• more than one event with probability O(∆t2).

Putting everything together we get

p0(t + ∆t) = µ∆t × 1
+ λ∆t × p0(t)2

+ (1 − λ∆t − µ∆t) × p0(t)
+O(∆t2),
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which can be rewritten as

p0(t + ∆t) − p0(t)
∆t

= µ + λp0(t)2 − (λ + µ)p0(t) +O(∆t).

Taking the limit as ∆t → 0 leads to the above-mentioned differential equation.
The boundary condition is due to zero probability of an extant species going
extinct:

p0(0) = 0.

The solution of this differential equation is given by

p0(t) = 1 − λ − µ
λ − µe−(λ−µ)t

.

Now, let p(t, t ′) denote the probability that a species living at time t survives
until time t ′, and that no observed speciation events occur during this time.
This probability is a solution of the following differential equation:

∂p(t, t ′)
∂t

= 2λp0(t)p(t, t ′) − (λ + µ)p(t, t ′),

with the boundary condition p(t ′, t ′) = 1.

To show that we will once again consider what events can occur between time
t + ∆t and time t. The probability of no extinction events occurring in this
interval is 1 − µ∆t +O(∆t2), and

• no speciation event occurs with probability 1 − λ∆t +O(∆t2),

• one speciation event occurs with probability λ∆t + O(∆t2); in this case
one of the two descendants must go extinct (probability of that being
p0(t) + O(∆t)) and the other must survive (probability of that being
p(t, t ′) +O(∆t)),

• more than one speciation event occurs with probability O(∆t2).

Putting everything together we get

p(t + ∆t, t ′) = (1 − µ∆t) × (1 − λ∆t) × p(t, t ′)
+ 2 × (1 − µ∆t) × λ∆t × p0(t) × p(t, t ′)
+O(∆t2),

or, after rearranging the terms, the following equation:

p(t + ∆t, t ′) − p(t, t ′)
∆t

= 2λp0(t)p(t, t ′) − (λ + µ)p(t, t ′).
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Taking the limit as ∆t → 0 leads to the above-mentioned differential equation.
At t = t ′ the species has already survived to t ′, i.e.

p(t ′, t ′) = 1.

The solution of this equation is given by

p(t, t ′) = e−(λ−µ)t

e−(λ−µ)t′

(
λ − µe−(λ−µ)t′

)2(
λ − µe−(λ−µ)t

)2 .
Let us now turn our attention to the surviving tree T . Let N denote the number
of the extant nodes in T , and T ′ denote the tree obtained from T by adding the
stalk—the edge from the origin to the most recent common ancestor (MRCA).
To make the notation simpler, let us enumerate all nodes in T ′ by time (the order
of the extant nodes is not important), using 0 for the origin at t0 = torig, and
t1 = tMRCA, t2, . . . , tN−1 denoting the times for the internal nodes. The time ti
for all extant nodes i ∈ {N, . . . , 2N − 1} is equal to 0.

For the sake of simplicity we will assume that phylogenetic trees are unlabelled
(i.e. the leaves have no labels) and oriented, that is, it is possible to distinguish
which child of an internal node is the “left” one and which is the “right” one.
This is indeed a simplification: the extant species have been assigned names
and phylogenies are unoriented—if we swap the subtrees of any node, the new
tree still represents the same result of the evolutionary process. The likelihood
of a labelled and unoriented tree can be easily derived from the likelihood of
the unlabelled and oriented tree by multiplying it with a constant factor that
depends only on the number of extant nodes (e.g. [I]):

p̃(T |θ) = 2N−1

N!
p(T |θ),

where p̃(T |θ) denotes the likelihood of the labelled and unoriented tree. As
this constant factor does not affect the posterior distribution, such an assump-
tion is quite common in the phylogenetic literature, often even without being
mentioned explicitly.

The likelihood p(T ′ |θ) of the extended tree T ′ is given by the product of the
following factors:

• for each edge in T ′ from a parent node i to a child node j, the probability
of the species surviving along the edge and not containing an observed
speciation, given by

p(ti, tj) =
e−(λ−µ)ti

e−(λ−µ)tj

(
λ − µe−(λ−µ)tj

)2(
λ − µe−(λ−µ)ti

)2 ,
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Figure 2.10: Descendants of the MRCA.

• for each internal node i ∈ {1, . . . , N − 1}, the probability of a speciation
event at the end of the edge from the parent of i to i, given by λ.

Putting everything together we can express the likelihood of the extended
surviving tree T ′ as follows:

p(T ′ |θ) = λN−1(λ − µ)2N
N−1∏
i=0

e−(λ−µ)ti(
λ − µe−(λ−µ)ti

)2 .
We have in the derivation of p(T ′ |θ) used a tree extended with the stalk, the
edge from the origin to the MRCA, but we do not actually know torig. One
option is to define the likelihood of T as follows:

p(T |θ) = p(T ′1 |θ)p(T ′2 |θ),
where T ′1 and T ′2 denote the subtrees of T corresponding to the two descendants
of the MRCA (the apostrophes are used to emphasize that both these subtrees
have a stalk), see Figure 2.10.

A better option is to condition the posterior distribution on tMRCA as well
(e.g. [56]):

p(θ |T, tMRCA) =
p(T |θ, tMRCA)p(θ)

p(T |tMRCA)
,

where the likelihood is given by

p(T |θ, tMRCA) =
p(T ′1 |θ)

S(θ, tMRCA)
p(T ′2 |θ)

S(θ, tMRCA)
.

S(θ, t) denotes the survival probability—the probability that an evolutionary
process starting at time t with a single species produces at least one extant
species. The survival is complementary to the extinction, i.e. S(θ, t)+p0(t) = 1.

The model evidence p(T |tMRCA) is in this case given by

p(T |tMRCA) =
∫

p(T |θ, tMRCA)p(θ)dθ.
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3
Probabilistic programming for phylogenetics

3.1 Parameter inference for the CRBD model

Recall the recipe for probabilistic modeling with probabilistic programming
languages from the first chapter:

1. Write a generative model as a computer program.

2. Add observe statements.

3. Run the program to automatically do the inference.

For phylogenetic birth-death models, the challenge is related to the second
point. Where and how exactly should we specify the observed tree? Can we
just implement the generative CRBD model (Algorithm 2.1, p. 38) from the
previous chapter, implement a function to prune a complete tree (to return its
surviving tree), and condition on the surviving tree being equal to the observed
tree (in the sense that it has the same topology and that all edge lengths are
the same)? Unfortunately, the answer is no (at least at the time of writing this
thesis). To understand why, consider the following example:

x ∼ N(0, 1)
... do something with x ...
observe x = 0.1

Since the variable x is continuous, the probability of x being equal to 0.1 (or any
other value) is 0. This is indeed the reason why we need both the distribution
and the observed value to be specified for continuous variables. Fortunately,
we can fix this program rather easily:
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x ← 0.1
observe x ∼ N(0, 1)
... do something with x ...

Can we fix the following program in a similar way?

x ∼ N(0, 1)
... do something with x ...
observe f (x) = 0.1

It depends on f (x). For example, if it is an injective and differentiable function,
we can use the change of variables technique to determine the distribution of
f (x). However, for more complex functions, including pruning, we need to
choose a different method.

Our approach [II] is based on augmentation, i.e. obtaining a complete tree from
the observed one. We traverse the observed tree, and for each edge we use
the generative model to simulate all unobserved events: hidden speciations,
parameter shifts, state shifts, etc. For each hidden speciation, we use the model
also to simulate the evolution of extinct species (starting at the time of the
hidden speciation).

As we traverse the observed tree, and augment it with unobserved events and
subtrees, we condition on the following:

1. No extinction events occur along the observed edges.

2. Observed speciation events occur at the end of the corresponding edges.

3. No species survive to the present time during simulations of unobserved
subtrees. This implies setting the importance weight to 0 (and stopping
the execution) if any simulated species survives to the present time (oth-
erwise the species would be observed and had to be a part of the observed
tree).

4. We double the probability of the execution for each hidden speciation
event. This is related to the fact that either of two descendants can
correspond to the hidden subtree.

A probabilistic program for the CRBD model in pseudocode is shown in Al-
gorithm 3.1. The program uses a specific probabilistic construct called factor
to explicitly multiply the probability of the execution (i.e. the particle weight
in the SMC based inference methods) by the given value. The factor construct
is closely related to the observe construct, which multiplies the probability by
the likelihood of the observed value with respect to the given distribution and
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Algorithm 3.1: A probabilistic program for the CRBD model.

1: λ ∼ prior distribution for λ
2: µ ∼ prior distribution for µ

3: for all r ∈ nodes of T do
4: if r is the root then
5: continue
6: end if
7: chs ∼ Poisson(λ∆r )
8: for i ← 1 to chs do
9: t ∼ Uniform(tr, tr + ∆r )

10: if Survives(t, λ, µ) then
11: factor 0
12: end if
13: factor 2
14: end for
15: observe 0 ∼ Poisson(µ∆r )
16: if r is a speciation then
17: observe 0 ∼ Exponential(λ)
18: end if
19: end for
20: return λ, µ

21: function Survives(t, λ, µ)
22: ∆ ∼ Exponential(µ)
23: if ∆ ≥ t then
24: return true
25: end if
26: cb ∼ Poisson (λ∆)
27: for i ← 1 to cb do
28: t ′ ∼ Uniform(t − ∆, t)
29: if Survives(t ′, λ, µ) then
30: return true
31: end if
32: end for
33: return false
34: end function
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its parameters. Note that we have not implemented conditioning on the time of
the MRCA, we will return to this in Section 3.4 (p. 63).

Let us go through the program in more detail. After defining the rates (lines 1–
2), we traverse all nodes of the observed tree T in a loop (line 3), for example
in the depth-first manner. We skip the root node (since the stalk is not known)
(line 4). The current node is denoted by r , the corresponding time by tr , and
the length of the edge to its parent by ∆r . To sample the times of hidden
speciation events along this edge we could sample a waiting time from an
exponential distribution with rate λ, reduce the current time (initially tr + ∆r )
by the sampled time, and repeat this procedure until the current time falls
below tr (recall that we use the time before present).

We use an alternative approach: we sample the number of hidden speciation
events chs along the edge from a Poisson distribution with rate λ∆r (line 7).
Given the number of events, their times are distributed uniformly (line 9). For
each hidden speciation we call the Survives function (line 10). This function
essentially implements the generative CRBD model to simulate the evolution of
extinct species. It interrupts the simulation and returns true immediately if any
species survives to the present time. In that case the execution probability is set
to 0 (line 11). Note that the inference engine will terminate the execution at this
point. If the simulation only led to extinct species (i.e. the Survives function
returned false), we double the execution probability (line 13) and continue to
the next hidden speciation.

Finally, we observe that there were no extinction events along the current edge
(line 15). More specifically, we use a Poisson distributed random variable with
rate µ∆r to represent the number of extinction events, and observe that this
number is 0.

If the current node represents a speciation event (line 17), we use an exponen-
tially distributed random variable with rate λ, representing the waiting time
for the next speciation event (starting at time tr , since the speciation events
between tr + ∆r and tr have been simulated earlier), and observe that this time
is 0.

In the Survives function, we first sample a waiting time ∆ until the next
extinction (line 22). If it is greater than the starting time t, the species has
survived to the present time and we return true. Otherwise we sample the
number of speciation events along a branch of length ∆ (line 26). For each of
them we sample the speciation time from a uniform distribution (line 28) and
recursively call the Survives function to simulate the evolution starting at that
time.

With the exception of the CRBD model we need to iterate over the nodes in
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an order which ensures that a node is processed before its descendants, due to
the inheritance of the rates (and possibly the state). During our work on [I]
we experimented with different orderings: we first generated a few random
“permutations” for each observed tree by swapping the left and right subtrees
of each node with probability 1/2. For each permutation we ran the program
multiple times, using depth-first search, and collected estimates of the marginal
likelihood. The variances of the estimates for different permutations of the
same observed tree varied significantly, indicating that the traversal order had
a significant effect on the quality of the inference. We also discovered that
processing the subtree with the smaller total length (i.e. the sum of all edge
lengths) first is an easy and effective heuristic to keep the variance low. In
the future we plan to look at this question in more detail and try to find other
heuristics or methods to determine the optimal traversal order.

In Section 1.4 (p. 24) on SMC based inference we resampled at each observe.
Some programming languages (e.g. WebPPL) will do so also at each factor.
Due to a random number of hidden speciations, this can create a misalignment
of which part of the tree is currently processed by the particles, and lead to
poor performance of the particle filter. In our implementation we resample
the particles after processing each node of the observed tree. Details and
comparison of unaligned and aligned resampling can be found in [I].

To estimate the posterior distribution of the rates λ and µ, we just need to
collect the sampled values from all particles (line 20) and their weights. As the
program sampled a complete tree during the execution, we can easily change
the return statement in order to estimate the expected value of any test function
of the rates and/or the complete tree.

The normalization constant Z coincides with the likelihood p(T |θ). This is
indeed one of the very important advantages of our approach, since it enables
comparison of different models using Bayes factors, as we have shown in [I].
The estimate of the normalization constant is unbiased, which makes it possible
to use it in hierarchical inference, such as particle Markov chain Monte Carlo
(PMCMC) [3]. If we also include the factor 2N−1/N! (e.g. at the very beginning
of the program), the normalization constant will represent the likelihood p̃(T |θ)
of the labelled and unoriented tree.

Until now we have assumed ideally reconstructed trees that include all extant
species. This is not always the case in real life. In birth-death models, in-
complete sampling of extant species (when some of the extant species and their
ancestors are missing in the reconstructed tree) can be easily modeled in several
ways, including uniform sampling (e.g. [55]): each species at the present time
t = 0 is included in the reconstructed tree with probability ρ. Algorithm 3.2
(p. 55) shows how to extend the program to support this model of incomplete
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sampling. The parts that are different from Algorithm 3.1 are shown in blue.

All ideas and methods we have introduced in this section and demonstrated
for the CRBD model are applicable to any birth-death model. Of course, the
programs need to handle other types of events as well, implement the formulas
calculating the speciation and extinction rates, pass all necessary information
from a parent node to its descendants, etc.

One of the non-trivial implementation details is sampling of the event times
of a non-homogenous Poisson process. Let ν(t) denote the rate of the process
and ∆ its duration. If there exists ν0 such that ν0 ≥ ν(t) for all t ∈ (0,∆), we
can use the thinning algorithm [34]:

t ← 0
while t < ∆ do
δ ∼ Exponential(ν0)
t ← t + δ
if t < ∆ then
α ∼ Bernoulli(ν(t)/ν0)
if α then

yield t
end if

end if
end while

For decreasing ν(t) it is convenient to set ν0 at the beginning of each loop
iteration to ν(t).
Our implementation of the CRBD model (and other models from Chapter 2) in
Birch can be found at https://github.com/phyppl/probabilistic-programming.

3.2 Alive particle filter

While simulating the hidden subtrees, if any of the species survives to the
present time, we set the weight to zero and terminate the execution. These
executions impoverish the particle set: there are fewer particles (with non-zero
weight) to choose from at the next resampling checkpoint. But is this a problem
at all? How often does a simulation of a hidden subtree result in setting the
weight to zero? For the CRBD model, this probability is given by 1 − p0(t),
where p0(t) is the extinction probability introduced in Section 2.6 (p. 44):

1 − p0(t) =
λ − µ

λ − µe−(λ−µ)t
.
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Algorithm 3.2: A probabilistic program for the CRBD model with uniform incomplete sam-
pling.

1: λ ∼ prior distribution for λ
2: µ ∼ prior distribution for µ

3: for all r ∈ nodes of T do
4: if r is the root then continue end if
5: chs ∼ Poisson(λ∆r )
6: for i ← 1 to chs do
7: t ∼ Uniform(tr, tr + ∆r )
8: if Survives(t, λ, µ) then
9: factor 0

10: end if
11: factor 2
12: end for
13: observe 0 ∼ Poisson(µ∆r )
14: if r is a speciation then
15: observe 0 ∼ Exponential(λ)
16: end if
17: if r is an extant species then
18: observe true ∼ Bernoulli(ρ)
19: end if
20: end for
21: return λ, µ

22: function Survives(t, λ, µ)
23: ∆ ∼ Exponential(µ)
24: if ∆ ≥ t then
25: o ∼ Bernoulli(ρ)
26: if o then
27: return true
28: end if
29: ∆← t
30: end if
31: cb ∼ Poisson (λ∆)
32: for i ← 1 to cb do
33: t ′ ∼ Uniform(t − ∆, t)
34: if Survives(t ′, λ, µ) then return true end if
35: end for
36: return true
37: end function
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Algorithm 3.3: Alive particle filter (APF) for probabilistic programming.

1: for n = 1, . . . N do
2: wn

0 ← 1
3: xn0 ← � ▷ Initialization

4: end for
5: for t = 1, . . .T do
6: Pt ← 0
7: for n = 1, . . . N + 1 do
8: repeat
9: an

t ∼ Categorical({wm
t−1}

M
m=1) ▷ Resampling

10: xnt ← Propagate(xa
n
t

t−1) ▷ Propagation

11: Pt ← Pt + 1
12: wn

t ← pγ[t](yt | Pa(xnt )) ▷ Weighting

13: xnt ← xnt ∪ {(γ[t], yt )}
14: until wn

t > 0
15: end for
16: end for
17: for n = 1, . . . N do
18: hn ← h(xnT )
19: end for
20: E[h] ≈ ∑

n w
n
T hn/∑n w

n

For most models, this probability does not have a closed form (that is the reason
why we use the generative model to simulate the hidden subtrees). Taken into
account that there might be several hidden speciations along a single edge, the
fraction of particles that have zero weight at a resampling checkpoint might be
quite large.

In [II] we proposed a solution based on an extended alive particle filter (APF).
This inference algorithm replaces every particle that has zero weight by re-
turning to the previous time step and repeating the resampling and propagation
steps. The procedure is repeated until all particles have positive (i.e. non-zero)
weight. The APF needs to use one extra particle (compared to the bootstrap
particle filter), but with a reasonable number of particles this cost is negligible.
Algorithm 3.3 summarizes the algorithm (differences between this algorithm
and the bootstrap particle filter are shown in blue).

The estimator of the marginal likelihood is given by

Ẑ =
T∏
t=1

∑N
n=1 w

n
t

Pt − 1
,
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where Pt is the total number of the propagations at time step t, including the
propagations for rejected particles and the propagations for the extra particle.

More details, including the proof of the unbiasedness of the estimator of the
marginal likelihood can be found in [II]. There we also present experiments
comparing the performance of the alive particle algorithm with the bootstrap
particle filter for the CRBD and BiSSE models.

In [IV] we present a similar algorithm, particle filter with rejection control (PF-
RC), in which the weights of the particles are compared to given thresholds
(rather than to 0 as in the APF). Particles with weights below the chosen thresh-
olds, are probabilistically discarded (with probabilities given by the weights of
the particles divided by the threshold) and the resampling and propagation steps
are repeated. We have demonstrated the algorithm with a couple of examples
not related to phylogenetics, but believe that this algorithm might be useful
for the phylogenetic birth-death models too. The question that needs to be
investigated is how to determine the thresholds. An interesting incentive for
using this algorithm for phylogenetic models is that it enables the rejection of
some particles even before simulating the hidden subtrees. For each node, we
can simulate the number of hidden speciation events and update the weight,
assuming that no species survive while simulating the hidden subtrees, and
reject the particles based on the updated weights. For particles that are (tenta-
tively) accepted, we can simulate the hidden subtrees, and reject those where
the assumption is not met (i.e. any species survives to the present time).

3.3 Delayed sampling

Recall the following example in Birch from the first chapter:
x:Random<Real>;
y:Random<Real>;

x ~ Gaussian(0, 1);
y ~ Gaussian(x, 1);
stdout.print("y = " + y.value() + "\n");

As we mentioned there, the variable x is never realized during the execution of
the program. From a mathematical point of view, this makes perfect sense. The
program specifies the joint distribution p(x, y), and if sampled immediately, we
would first sample x from N(0, 1), and then y, based on the value of x, from
p(y |x), which is N(x, 1). Due to the conjugacy relationship between x and y

there is a closed form solution for both p(y) and p(x |y):

p(y) =
∫ ∞

−∞
p(y |x)p(x)dx = N(y |0, 2)
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p(x |y) = N(x |y/2, 1/2)

We can sample y from N(0, 2) first, and then sample x from N(y/2, 1/2). We
are indeed getting samples from the same joint distribution encoded by the
program, since p(x, y) = p(x)p(y |x) = p(y)p(x |y).
Delayed sampling, introduced in [III], exploits analytically tractable relation-
ships between random variables in probabilistic programs automatically in
order to lower the variance of the resulting estimators. Programmers do not
need to implement any of the analytical relationships (or even realize that there
actually are some).

When executing a program, a directed acyclic graph, or more precisely a forest
of trees, is built dynamically, with the nodes representing the encountered ran-
dom variables and the edges representing the analytical relationships between
them. Each node and the corresponding variable can be in one of the three
states:

• initialized (the random variable has been inserted into the graph but not
processed further),

• marginalized (the random variable has been marginalized over its parents
and potentially conditioned on the value of the dependent variable),

• realized (the random variable has been sampled or it is observed).

Nodes in the marginalized state have a proposal distribution associated with
them, which is used when realizing the random variables. The method does
not allow marginalized nodes to have more than one marginalized child. This
means that the marginalized nodes in each tree form a path, which we will refer
to as the M-path. The M-path of a tree starts at the root node (which is always
in the marginalized state) and ends in a node referred to as the terminal node.

Each random variable encountered during the execution is inserted into the
graph. If there is an analytically tractable relationship to another variable, it is
inserted as a child of the node corresponding to that variable and set to be in
the initialized state, otherwise it forms a new tree consisting of a single node
in the marginalized state (its proposal distribution is the distribution specified
by the program).

For a random variable to be realized, the corresponding node must be the
terminal node on an M-path. If it already is, the value is sampled from
(resp. observed with respect to) its proposal distribution, and the state is changed
to realized. The edges to the children are removed, and each child becomes
the marginalized root of a new tree (the proposal distribution is given by the
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program and the sampled value). The parent of the realized node (if there is
one) becomes the new terminal node of the M-path and its proposal distribution
is conditioned on the realized value.

If the target node corresponding to the random variable being realized is not
a terminal node, the following graph operations must be performed before we
can use the above-mentioned procedure:

• If the node lies on the M-path: the M-path is shortened by repeatedly
realizing its terminal node until the target node becomes terminal (this
operation is called pruning).

• If the node does not lie on the M-path: we first use pruning to shorten the
M-path until any of the target node’s ancestors becomes terminal, and
then extend the M-path towards the target node by repeatedly marginal-
izing the initialized variables over their parents (this operation is called
grafting).

Specific details of these operations, including the pseudocode, as well as a
comparison of the performance of immediate and delayed sampling can be
found in [III].

To illustrate these operations, consider the following program:

a ∼ N(0, 1)
b ∼ N(a, 1)
c ∼ N(b, 1)
d ∼ N(b, 1)
e ∼ N(c, 1)
f ∼ N(d, 1)
Print(e)
Print(d)

Figure 3.1 (p. 60) shows different states of the graph during execution. Figure
(a) corresponds to the state before printing the value of e.

When the value of e needs to be sampled, we first marginalize b, then c and
finally e, in order to form the M-path from the root a to the node e. The state
of the graph at this moment is depicted in Figure (b) together with the proposal
distributions.

When e gets sampled from qe, the sampled value, say 1.2, is used to update
the proposal distribution qc. The state of e is changed to realized, and the edge
between c and e is removed. The node c becomes the new terminal node. This
state corresponds to Figure (c).
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Figure 3.1: Illustration of graph operations in delayed sampling. See the description in the text.
Initialized nodes are shown with dotted circles and the letter I, marginalized nodes
with solid circles and the letter M, and realized nodes with dashed gray circles and
the letter R. The letter T denotes terminal nodes on M-paths, which are shown with
thick lines.
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Next we wish to print the value of d. Before we can sample it, we need d to
become a terminal node. We first shorten the M-path by sampling c (and the
sampled value, say 2, is used to update the proposal distribution qb), see Figure
(d), and then extend it to d by marginalization of this variable, see Figure (e).
At this moment we can sample the value of d, and use the value, say −0.1, to
update the proposal distribution of b. The node for f becomes the root of a
new tree, and the proposal distribution is set based on the sampled value.

Let us now return to the phylogenetic birth-death models, and show how de-
layed sampling can be employed in these models [II]. It is mathematically
convenient to use gamma distributions as priors for both λ and µ, since the
gamma distribution is a conjugate prior for both the exponential and Poisson
likelihood:

λ ∼ Gamma(kλ, θλ),
µ ∼ Gamma(kµ, θµ).

Note that we use the shape/scale parametrization for gamma distributions.

Let us go through the probabilistic constructs involving the speciation and
extinction rates in Algorithm 3.1 (p. 51) and Algorithm 3.2 (p. 55):

1. Sampling the number of speciation events c along an edge of length ∆:

c ∼ Poisson(λ∆).

In the delayed sampling setting, if λ is marginalized and its proposal
distribution is

qλ = Gamma(k, θ),

the value of c is sampled from the marginal distribution

qc = NegativeBinomial
(
k,

1
1 + ∆θ

)
,

where the sampled value represents the number of failures. (The param-
eterization used here is the number of successes before the experiment
is stopped, and the success probability.)
The proposal distribution for λ is then updated, based on the sampled
value c, to

qλ ← Gamma
(
k + c,

θ

1 + ∆θ

)
,

that is, its shape gets incremented by the sampled value, and the scale is
updated to θ/(1 + ∆θ).
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2. Observing no extinction events along an edge of length ∆:

observe 0 ∼ Poisson(µ∆)

Similarly, if µ is marginalized with the proposal distribution being

qµ = Gamma(k, θ),

the importance weight is multiplied by the probability mass of 0 with
respect to the proposal distribution qc of a random variable representing
the number of extinction events along the edge with length ∆:

qc = NegativeBinomial
(
k,

1
1 + ∆θ

)
.

The proposal distribution for µ is then updated to

qλ ← Gamma
(
k,

θ

1 + ∆θ

)
,

that is, its shape remains the same, and the scale gets updated to
θ/(1 + ∆θ).

3. Sampling a waiting time ∆ from an exponential distribution with rate µ:

∆ ∼ Exponential(µ).

Again, we assume that the proposal distribution for µ is

qµ = Gamma(k, θ),

and sample the value of ∆ from

q∆ = Lomax
(
1
θ
, k

)
,

where we have used the scale/shape parametrization of the Lomax dis-
tribution (see Appendix A, p. 79).

The proposal distribution for µ is afterwards updated to

qµ ← Gamma
(
k + 1,

θ

1 + ∆θ

)
,

that is, its shape gets incremented by 1, and the scale gets updated to
θ/(1 + ∆θ).
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4. Finally, observing the speciation event at the end of an observed edge:

observe 0 ∼ Exponential(λ).

Starting with the proposal distribution of λ,

qλ = Gamma(k, θ),

the importance weight is multiplied by the probability density of 0 with
respect to the proposal distribution q∆ of a random variable representing
the waiting time:

q∆ = Lomax
(
1
θ
, k

)
.

The proposal distribution of λ gets updated to

qλ = Gamma(k + 1, θ),

that is, its shape gets incremented by 1, and the scale remains the same.

All four situations are summarized in Figure 3.2 (p. 64).

Interestingly, the consequence of employing delayed sampling in Algorithm 3.1
(p. 51) and Algorithm 3.2 (p. 55) is that both λ and µ remain delayed even when
the program finishes. This allows us to estimate the posterior distribution of
λ resp. µ as a mixture of the particles’ proposal distributions at the end of the
execution. The mixture weights are just the normalized final weights of the
particles.

More details about using delayed sampling with the alive particle filter (APF)
for phylogenetic birth-death models, including a comparison to immediate
sampling with the bootstrap particle filter (BPF) can be found in [II]. The
combination of APF with delayed sampling has also been used to run the
inference in Birch in the experiments in [I].

3.4 Conditioning on the time of the most recent com-
mon ancestor

At the end of Chapter 2 we considered two options for dealing with the fact
that the time of origin is not known, or in other words, that the observed tree
does not include the stalk. The first option was to calculate the likelihood of
the observed tree as the product of the likelihoods of its two subtrees, i.e.

p(T |θ) = p(T ′1 |θ)p(T ′2 |θ).
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Figure 3.2: Delayed sampling in the phylogenetic birth-death models.
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This option is exactly what we used so far in this chapter. We will now look
closer at the second option: conditioning the posterior distribution on the time
of the MRCA. Recall that the likelihood is in this case given by

p(T |θ, tMRCA) =
p(T ′1 |θ)p(T ′2 |θ)
S(θ, tMRCA)2

.

This implies that we need to divide the particle weight (the execution probabil-
ity) by S(θ, tMRCA)2. For the CRBD model the survival probability is known
analytically, but as mentioned before, this is not the case for most birth-death
models.

In [I] we proposed a solution that does not require the survival probability to
be known. After traversing the tree, we use the generative model to simulate
two independent evolutionary processes starting at tMRCA, and consider the
outcome successful if both processes survive to the present time. We repeat
this procedure until the first success, and multiply the weight of the particle by
the number of trials (up to and including the successful one). This method is
based on the fact that 1/S(θ, tMRCA)2 is the expected value of the number of
trials of a geometric distribution with the success probability S(θ, tMRCA)2:

1
S(θ, tMRCA)2

=

∞∑
M=1

M(1 − S(θ, tMRCA)2)M−1S(θ, tMRCA)2.

The updated probabilistic program for the CRBD model is shown in Algo-
rithm 3.4 (p. 66).
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Algorithm 3.4: A probabilistic program for the CRBD model with the survivorship bias cor-
rection.

1: λ ∼ prior distribution for λ
2: µ ∼ prior distribution for µ

3: for all r ∈ nodes of T do
4: if r is the root then
5: continue
6: end if
7: chs ∼ Poisson(λ∆r )
8: for i ← 1 to chs do
9: t ∼ Uniform(tr, tr + ∆r )

10: if not GoesExtinct(t, λ, µ) then
11: factor 0
12: end if
13: factor 2
14: end for
15: observe 0 ∼ Poisson(µ∆r )
16: if r is a speciation then
17: observe 0 ∼ Exponential(λ)
18: end if
19: end for
20: M ← 1
21: while GoesExtinct(tMRCA, λ, µ) or GoesExtinct(tMRCA, λ, µ) do
22: M ← M + 1
23: end while
24: factor M
25: return λ, µ

26: function GoesExtinct(t, λ, µ)
27: ∆ ∼ Exponential(µ)
28: if ∆ ≥ t then
29: return false
30: end if
31: cb ∼ Poisson (λ∆)
32: for i ← 1 to cb do
33: t ′ ∼ Uniform(t − ∆, t)
34: if not GoesExtinct(t ′, λ, µ) then
35: return false
36: end if
37: end for
38: return true
39: end function
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4
Conclusion

This thesis is based on a collection of papers that introduce probabilistic pro-
gramming as a completely new approach to parameter inference for phylo-
genetic birth-death models, and prove the feasibility of this approach. The
birth-death models can be written as simple programs in probabilistic program-
ming languages, and benefit from automatic inference which is an integral part
of these languages. These programs are simple enough to allow biologists
with just a basic understanding of programming to prototype, test and employ
new models quickly, and without the need to derive and implement a bespoke
inference algorithm.

With automatic inference based on sequential Monte Carlo methods, our ap-
proach, unlike the existing ones, also allows the model evidence to be estimated
without bias. This in turn enables the employment of hierarchical inference
algorithms as well as comparing different models.

The contribution to the automatic inference methods, namely delayed sampling
and the extended alive particle filter, are not only relevant for phylogenetics, but
for probabilistic programming in general. We have implemented well-known
phylogenetic models and shown how the above-mentioned methods improve
the quality of inference for these models.

Future work

Our work is not finished by any means. We have already mentioned some
of the possible future directions in the previous chapter, namely the rejection
control particle filter (and the question of how to determine its thresholds) and
the question of finding the optimal traversal order of the observed tree.

In order to be able to work with big trees (with thousands of extant species) we
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need to make the inference even more efficient (in terms of lowering the variance
of the estimators and making the inference faster). This might include extending
the existing inference algorithms as well as developing new algorithms and
heuristics. Solving these problems is relevant not only for phylogenetics, but
also for automatic inference in probabilistic programming languages in general.

In the present work we have assumed that the observed tree is known and
mentioned briefly that it is reconstructed from such data as morphological
traits and genomic data. We would like to join these two processes into one
and employ probabilistic programming to infer both the tree and the parameters
directly from these data.

Another interesting direction is solving the problem introduced in the beginning
of the previous chapter: rather than implementing a generative program and
just use a single observe, we needed to implement plenty of “partial” observes.
How can we get PPLs to do this automatically?

We hope that our work will encourage other researchers and software devel-
opers to join us on our path towards the ultimate goal: to give computational
phylogeneticists a set of tools that will enable them to think big about new
models and reduce the time needed from an initial idea to running efficient
simulation and inference for these models.
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6
Summary in Swedish

Fylogenetiska födelse-/döds-modeller är en familj av matematiska modeller
av evolution där man betraktar speciering (när populationen av en art delas
upp i två grupper och så småningom bildar två nya arter) och utrotning (när
hela populationen av en art dör ut) som plötsliga händelser som inträffar vid
slumpmässiga tidpunkter. Med tanke på hur lång evolutionen är är ju en sådan
förenkling acceptabel. Tiden det tar for en art att genomgå en speciering,
respektive tills de utrotas, modelleras som exponentialfördelade slumpmässiga
variabler. I de flesta modeller är hastighetsparametrarna inte konstanta: det
kan handla om både kontinuerliga och plötsliga förändringar som påverkar
en enskild art, grupper av arter eller alla arter. Vilka förändringar som är
tillåtna och på vilket sätt dessa modelleras beror på de konkreta födelse-/döds-
modellerna. Mer avancerade modeller kan också innehålla olika tillstånd för
arter (t.ex. om en art är monogam eller inte) samt modellera deras förändringar.

Att använda fylogenetiska födelse-/döds-modeller för att simulera evolutionära
processer på en dator är ganska enkelt: med enbart grundläggande program-
meringskunskaper kan man implementera en födelse-/döds-modell som ett
datorprogram. Vid körning börjar programmet med en enda art (vid en given
tidpunkt i det förflutna) och simulerar steg för steg specierings- och utrot-
ningshändelser. Ett resultat av en sådan simulering är en så kallad fullständig
fylogeni (eller ett fullständigt evolutionärt träd). Med fullständig menas här att
trädet också inkluderar utdöda arter. Det är lätt att konvertera detta träd till ett
”rekonstruerat” träd som bara visar utvecklingen för de befintliga arterna och
deras förfäder – vi behöver bara ta bort de delar av den fullständiga fylogenin
som endast är kopplade till de utdöda arterna.

Det omvända problemet är mer intressant och betydelsefullt för fylogeneti-
ker: givet en fylogeni rekonstruerad från tillgängliga data om nu levande arter
(t.ex. genomiska sekvenser) och en födelse-/döds-modell, vad kan man säga
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om parametrarna för denna modell, t.ex. specierings- och utrotningshastighe-
ter? För att svara på sådana frågor när forskare har föreslagit nya födelse-/döds-
modeller krävs det idag hjälp av externa experter. De hjälper till med att hitta och
implementera skräddarsydda inferensalgoritmer, samt att implementera dem i
befintliga eller nya programvarupaket som vanligtvis är ganska komplexa.

Vårt arbete löser detta problem på ett helt nytt sätt genom att använda så
kallade probabilistiska programmeringsspråk. Dessa språk har inbyggt stöd
för slumpmässiga variabler, sannolikhetsfördelningar och olika probabilistiska
konstruktioner (som t.ex. sampling och observationer). En mycket viktig del
är integrerad automatisk inferens: man behöver inte hitta och implementera
någon inferensalgoritm (vilket vanligtvis är svårt) utan snarare beskriver man
den generativa modellen i form av ett program som kan simulera denna modell
(vilket vanligtvis är enkelt), lägger till informationen om vad som observerades,
och kör programmet för att genomföra inferens automatiskt.

I denna doktorsavhandling visade vi hur man kan koda olika fylogenetiska
födelse-/döds-modeller som enkla program i probabilistiska programmerings-
språk och bevisat att det går att få användbara resultat inom rimlig tid. Vår
metod är baserad på augmentation: programmet går igenom den rekonstruerade
fylogenin, gren för gren, och lägger till obemärkta händelser och simulerar
utvecklingen av utdöda arter. På detta sätt kan man uppskatta (fördelningar av)
modellparametrarna.

Med automatisk inferens baserad på sekventiell Monte Carlo tillåter vårt tillvä-
gagångssätt, till skillnad från de befintliga sätten, också att uppskatta marginell
sannolikhet (sannolikhet att modellen kunde leda till just den aktuella rekon-
struerade fylogenin) utan bias och möjliggör därmed användning av hierarkiska
modeller samt jämförelse av olika modeller. Våra bidrag till de automatiska in-
ferensmetoderna (t.ex. fördröjd sampling och det utvidgade alive particle filter)
är inte relevanta endast för fylogenetik utan även för probabilistisk program-
mering generellt.
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A
Used distributions and their

parameterizations

Bernoulli distribution

Notation: k ∼ Bernoulli(p)
Parameters:

• probability p ∈ [0, 1]

Probability mass function:

f (k |p) =
{

p if k = 1 (true)
1 − p if k = 0 (false)

Binomial distribution

Notation: k ∼ Binomial(n, p)
Parameters:

• number of trials n ∈ N ∪ {0}

• probability of success p ∈ [0, 1]

Probability mass function:

f (k |n, p) =
(
n
k

)
pk(1 − p)n−k for k ∈ N ∪ {0}
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Exponential distribution

Notation: x ∼ Exponential(λ)
Parameters:

• rate λ > 0

Probability density function:

f (x |λ) = λe−λx for x ≥ 0

Gamma distribution

Notation: x ∼ Gamma(k, θ)
Parameters:

• shape k > 0

• scale θ > 0

Probability density function:

f (x |k, θ) = 1
Γ(k)θk

xk−1e−x/θ for x > 0

Lomax distribution

Notation: x ∼ Lomax(λ, α)
Parameters:

• scale λ > 0

• shape α > 0

Probability density function:

f (x |λ, α) = α
λ

(
1 +

x
λ

)−(α+1)
for x ≥ 0
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Negative binomial distribution

Notation: r ∼ NegativeBinomial(k, p)
Parameters:

• number of successes before the experiment is stopped k ∈ N

• probability of success p ∈ [0, 1]

Probability mass function:

f (r |k, p) =
(
r + k − 1

k − 1

)
pk(1 − p)r for r ∈ N ∪ {0},

where r is the number of failures.

Normal (Gaussian) distribution

Notation: x ∼ N(µ, σ2)
Parameters:

• mean µ

• variance σ2 > 0

Probability density function:

f (x |µ, σ2) = N(x |µ, σ2) = 1
√

2πσ2
e−
(x−µ)2

2σ2

Poisson distribution

Notation: k ∼ Poisson(λ)
Parameters:

• rate λ > 0

Probability mass function:

f (k |λ) = λ
k

k!
e−λ for k ∈ N ∪ {0}
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Uniform distribution

Notation: x ∼ Uniform(a, b)
Parameters:

• lower bound a

• upper bound b > a

Probability density function:

f (x |a, b) =
{ 1

b−a for x ∈ [a, b]
0 otherwise
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B
Used abbreviations

APF Alive particle filter

BAMM Bayesian analysis of macro-evolutionary mixtures (model)

BiSSE Binary state speciation and extinction (model)

BP Before present (time)

BPF Bootstrap particle filter

ClaDS Cladogenetic diversification rate shift (model)

CPS Continuation-passing style

CPU Central processing unit

CRBD Constant-rate birth-death (model)

ESS Effective sample size

GPU Graphics processing unit

LSBDS Lineage-specific birth-death-shift (model)

MCMC Markov chain Monte Carlo

MRCA Most recent common ancestor

PF-RC Particle filter with rejection control

PGM Probabilistic graphical model

PMCMC Particle Markov chain Monte Carlo

PPL Probabilistic programming language
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SMC Sequential Monte Carlo
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Universal probabilistic programming offers a
powerful approach to statistical phylogenetics
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1Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
2Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden
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5Uber AI, San Francisco CA 94105, United States

Statistical phylogenetic analysis currently relies on complex, dedicated software packages, making it difficult for evolu-
tionary biologists to explore new models and inference strategies. Recent years have seen more generic solutions based
on probabilistic graphical models, but this formalism can only partly express phylogenetic problems. Here we show that
universal probabilistic programming languages (PPLs) solve the expressivity problem, while still supporting automated
generation of efficient inference algorithms. To prove the latter point, we develop automated generation of sequential
Monte Carlo (SMC) algorithms for PPL descriptions of arbitrary biological diversification (birth-death) models. SMC is a
new inference strategy for these problems, supporting both parameter inference and efficient estimation of Bayes factors
that are used in model testing. We take advantage of this in automatically generating SMC algorithms for several recent
diversification models that have been difficult or impossible to tackle previously. Finally, applying these algorithms to
40 bird phylogenies, we show that models with slowing diversification, constant turnover and many small shifts gener-
ally explain the data best. Our work opens up several related problem domains to PPL approaches, and shows that few
hurdles remain before these techniques can be effectively applied to the full range of phylogenetic models.

Introduction

In statistical phylogenetics, we are interested in learning the pa-
rameters of models in which evolutionary trees—phylogenies—
play an important part. Such analyses have a surprisingly wide
range of applications across the life sciences1,2,3. In fact, the
research front in many disciplines is partly defined today by our
ability to learn the parameters of realistic phylogenetic models.

Statistical problems are often analyzed using generic model-
ing and inference tools. Not so in phylogenetics, where empiri-
cists are largely dependent on dedicated software developed by
small teams of computational biologists3. Even though these
software packages have become increasingly flexible in recent
years, empiricists are still limited to a large extent by predefined
model spaces and inference strategies. Venturing outside these
boundaries typically requires the help of skilled programmers
and inference experts.

If it were possible to specify arbitrary phylogenetic models in
an easy and intuitive way, and then automatically learn the latent
variables (the unknown parameters) in them, the full creativity
of the research community could be unleashed, significantly
accelerating progress. There are two major hurdles standing
in the way of such a vision. First, we must find a formalism
(a language) that can express phylogenetic models in all their
complexity, while still being easy to learn for empiricists (the
modeling language expressivity problem). Second, we need
to be able to generate computationally efficient inference al-
gorithms from such model descriptions, drawing from the full
range of techniques available today (the automated inference
problem).

In recent years, there has been significant progress to-
wards solving the expressivity problem by adopting the frame-
work of probabilistic graphical models (PGMs)4,5. PGMs

∗E-mail: fredrik.ronquist@nrm.se
†These authors contributed equally.

can express many components of phylogenetic models in a
structured way, so that efficient Markov chain Monte Carlo
(MCMC) samplers—the current workhorse of Bayesian statis-
tical phylogenetics—can be automatically generated for them5.
Other, more novel inference strategies are also readily applied
to PGM descriptions of phylogenetic model components, as
exemplified by recent work using STAN6 or the new Blang
framework7.

Unfortunately, PGMs cannot express the core of phylogenetic
models: the stochastic processes that generate the tree, and
anything dependent on those processes. This is because the
evolutionary tree has variable topology, while a PGM expresses
a fixed topology. The problem even occurs on a fixed tree, if
we need to express the possible existence of unobserved side
branches that have gone extinct or have not been sampled. There
could be any number of those for a given observed tree, each
corresponding to a separate PGM instance.

Similar problems occur when describing evolutionary pro-
cesses occurring on the branches of the tree. Many of the
standard models considered today for trait evolution, such as
continuous-time discrete-state Markov chains, are associated
with an infinite number of possible change histories on a given
branch. It is not always possible to represent this as a single
distribution with an analytical likelihood that integrates out all
change histories. Thus, it is sometimes necessary to describe
the model as an unbounded stochastic loop or recursion over
potential PGMs (individual change histories).

PGM-based systems may address these shortcomings by pro-
viding model components that hide underlying complexity. For
instance, a tree may be represented as a single stochastic vari-
able in a PGM-based model description5. An important dis-
advantage of this approach is that it removes information about
complex model components from the model description. This
forces users to choose among predefined alternatives instead
of enabling them to describe how these model components are
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structured. Furthermore, computers can no longer ’understand’
these components from the model description, making it im-
possible to automatically apply generic inference algorithms
to them. Instead, special-purpose code has to be developed
manually for each of the components. Finally, hiding a com-
plex model component, such as a phylogenetic tree, also makes
dependent variables unavailable for automated inference. In
phylogenetics, for instance, a single stochastic tree node makes
it impossible to describe branch-wise relations between the pro-
cesses that generated the tree and other model components, such
as the rate of evolution, the evolution of organism traits, or the
dispersal of lineages across space.

Here, we show that the expressivity problem can be solved
using universal probabilistic programming languages (PPLs).
A universal PPL is an extension of a Turing-complete general-
purpose language, which can express models with an unbounded
number of random variables. This means that random variables
are not fixed statically in the model (as they are in a finite PGM)
but can be created dynamically during execution.

PPLs have a long history in computer science8, but until re-
cently they have been largely of academic interest because of
the difficulty of generating efficient inference machinery from
model descriptions using such expressive languages. This is
now changing rapidly thanks to improved methods of automated
inference for PPLs9,10,11,12,13,14, and the increased interest in
more flexible approaches to statistical modeling and analysis.
Current PPL inference algorithms provide state-of-the-art per-
formance for many models but they are still quite inefficient for
others. Improving PPL algorithms so that they can compete
with manually engineered solutions for more problem domains
is currently a very active research area.

To demonstrate the potential of PPLs in statistical phyloge-
netics, we tackle a tough problem domain: models that accom-
modate variation across lineages in diversification rate. These
include the recent ClaDS (ClaDS0, ClaDS1, and ClaDS2)15,
LSBDS16 and BAMM17 models, attracting considerable in-
terest among evolutionary biologists despite the difficulties in
developing good inference algorithms for some of them18.

Using WebPPL—an easy-to-learn PPL9—and Birch—a lan-
guage with a more computationally efficient inference machin-
ery14—we develop techniques that allow us to automatically
generate efficient sequential Monte Carlo (SMC) algorithms
from short descriptions of these models (∼ 100 lines of code
each). Although we found it convenient to work with WebPPL
and Birch for this paper, we emphasize that similar work could
have been done using other universal PPLs. Adopting the PPL
approach allows us generate the first efficient SMC algorithms
for these models, and the first asymptotically exact inference
machinery for the full BAMM model. Among other benefits,
SMC inference allows us to directly estimate the marginal likeli-
hoods of the models, so that we can assess their performance in
explaining empirical data using rigorous Bayesian model com-
parison. Taking advantage of this, we show that models with
slowing diversification, constant turnover and many small shifts
(all combined in ClaDS2) generally explain the data from 40
bird phylogenies better than alternative models. We end the pa-
per by discussing a few problems, all seemingly tractable, which
remain to be solved before PPLs can be used to address the full
range of phylogenetic models. Solving them would facilitate
the adoption of a wide range of novel inference strategies that
have seen little or no use in phylogenetics before.

1 1 1 1

λ µ

τ

Fig. 1 A probabilistic graphical model describing constant rate
birth-death (CRBD). The square boxes are fixed nodes (parameters
of the gamma distributions) and the circles are random variables. The
shaded variable (τ) is observed, and (λ, µ) are latent variables to be
inferred.

Results

Probabilistic programming. Consider one of the simplest of
all diversification models, constant rate birth-death (CRBD), in
which lineages arise at a rate λ and die out at a rate µ, giving
rise to a phylogenetic tree τ. Assume that we want to infer the
values of λ and µ given some phylogenetic tree τobs of extant
(now living) species that we have observed (or inferred from
other data). In a Bayesian analysis, we would associate λ and
µ with prior distributions, and then learn their joint posterior
probability distribution given the observed value of τ.

Let us examine a PGM description of this model, say in
RevBayes5 (Algorithm 1). The first statement in the description
associates an observed tree with the variable myTree. The priors
on lambda and mu are then specified, and it is stated that the tree
variable tau is drawn from a birth-death process with parameters
lambda and mu and generating a tree with leaves matching the
taxa in myTree. Finally, tau is associated with (‘clamped to’)
the observed value myTree.

Algorithm 1 PGM description of the CRBD model

1 myTree = readTrees("treefile.nex")
2

3 lambda ~ dnGamma(1, 1)
4 mu ~ dnGamma(1, 1)
5

6 tau ~ dnBirthDeath(lambda, mu, myTree.taxa)
7 tau.clamp(myTree)

There is a one-to-one correspondence between these state-
ments and elements in the PGM graph describing the condi-
tional dependencies between the random variables in the model
(Figure 1). Given that the conditional densities dnGamma and
dnBirthDeath are known analytically, along with good sam-
plers, it is now straightforward to automatically generate stan-
dard inference algorithms, such as MCMC, for this problem.

Unfortunately, a PGM cannot describe from first principles
(elementary probability distributions) how the birth-death pro-
cess produces a tree of extant species. The PGM has a fixed
graph structure, while the probability of a surviving tree is an
integral over many outcomes with varying topology. Specif-
ically, the computation of dnBirthDeath requires integration
over all possible ways in which the process could have gener-
ated side branches that eventually go extinct, each of these with
a unique configuration of speciation and extinction events (Fig-
ure 2). The integral must be computed by special-purpose code
based on analytical or numerical solutions specific to the model.
For the CRBD model, the integral is known analytically, but as
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soon as we start experimenting with more sophisticated diversi-
fication scenarios, as evolutionary biologists would want to do,
computing the integral is likely to require dedicated numerical
solvers, if it can be computed at all.

Universal PPLs solve the expressivity problem by providing
additional expressive power over PGMs. A PPL model descrip-
tion is essentially a simulation program (or generative model).
Each time the program runs, it generates a different outcome.
If it is executed an infinite number of times, we obtain a prob-
ability distribution over outcomes. Thus, a PPL provides a
programmatic model description14.

A universal PPL provides two special constructs, one for
drawing a random variable from a probability distribution, and
one for conditioning a random variable on observed data. These
special constructs are used by the PPL inference algorithms to
manipulate executions of the program during inference. Many
PPLs are embedded in existing programming languages, with
these two special constructs added.

To use this approach, we need to write a PPL program so
that the distribution over outcomes corresponds to the posterior
probability distribution of interest. This is straightforward if we
understand how to simulate from the model, and how to insert
the constraints given by the observed data.

Assume, for instance, that we are interested in computing the
probability of survival and extinction under CRBD for specific
values of λ and µ, given that the process started at some time t
in the past. We will pretend that we do not know the analytical
solution to this problem; instead we will use a PPL to solve
it. WebPPL9 is an easy-to-learn PPL based on JavaScript, and
we will use it here for illustrating PPL concepts. WebPPL can
be run in a web browser at http://webppl.org or installed
locally (Supplementary Section 2.1). In WebPPL, the two spe-
cial constructs mentioned above are: (1) the sample statement,
which specifies the prior distributions from which random vari-
ables are drawn; and (2) the condition statement, conditioning a
random variable on an observation. WebPPL provides a couple
of alternatives to the condition statement, namely the observe
and factor statements. These are explained in Supplementary
Section 3.3.

In WebPPL, we define a function goesExtinct, which takes
the values of time, lambda and mu corresponding to variables
t, λ and µ, respectively (Algorithm 2). It returns true if the
process does not survive until the present (that is, goes extinct)
and false otherwise (survives to the present).

Fig. 2 Phylogenetic trees generated by a birth-death process. Two
trees with extinct side branches (thin lines), each corresponding to the
same observed phylogeny of extant species (thick lines). The trees
illustrate just two examples of an infinite number of possible PGM ex-
pansions of the τ node in Figure 1.

Algorithm 2 Basic birth-death model simulation in WebPPL

1 var goesExtinct = function(time, lambda, mu) {
2 var waitingTime = sample(
3 Exponential({a: lambda + mu})
4 )
5

6 if (waitingTime > time) { return false }
7

8 var isSpeciation = sample(
9 Bernoulli({p: lambda / (lambda + mu)})

10 )
11

12 if (isSpeciation == false) { return true }
13

14 return goesExtinct(time - waitingTime, lambda, mu)
15 && goesExtinct(time - waitingTime, lambda, mu)
16 }

The function starts at some time > 0 in the past. The
waitingTime until the next event is drawn from an exponential
distribution with rate lambda + mu and compared with time. If
waitingTime > time, the function returns false (the process
survived). Otherwise, we flip a coin (the Bernoulli distribu-
tion) to determine whether the next event is a speciation or an
extinction event. If it is a speciation, the process continues by
calling the same function recursively for each of the daughter
lineages with the updated time time - waitingTime. Other-
wise the function returns true (the lineage went extinct).

If executed many times, the goesExtinct function defines
a probability distribution on the outcome space {true, false}
for specific values of t, λ and µ. To turn this into a Bayesian
inference problem, let us associate λ and µ with gamma priors,
and then infer the posterior distribution of these parameters
assuming that we have observed a group originating at time t =
10 and surviving to the present. To do this, we combine the prior
specifications and the conditioning on survival to the present
with the goesExtinct function into a program that defines the
distribution of interest (Algorithm 3).

Algorithm 3 CRBD model description in WebPPL

1 var model = function() {
2 var lambda = sample(
3 Gamma({shape: 1, scale: 1})
4 )
5 var mu = sample(
6 Gamma({shape: 1, scale: 1})
7 )
8 var t = 10
9

10 condition(goesExtinct(t, lambda, mu) == false)
11

12 return [lambda, mu]
13 }

The goesExtinct function described above (Algorithm 2)
uses unbounded stochastic recursion: the tree that we simu-
late in the program can in principle grow to infinite size. This
effectively proves that the probabilistic programming language
defining this model, if it is to be used to simulate extinct side
branches, must be a universal PPL. This, in turn, implies that a
language that solves the expressivity problem in phylogenetics
can also describe any phylogenetic model from which we can
simulate using an algorithm. Adopting this approach thus al-
lows a clean separation of model specification from inference.
Of course, automated inference procedures now face the prob-
lem of executing complex universal PPL models on hardware
with physical constraints, such as limited memory size. How-
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ever, these challenges can typically be addressed using generic
approaches that apply to arbitrary model descriptions, relieving
both empiricists and algorithm developers from such concerns
over technical implementation details.

Because of the popularity of PPLs in recent years, the term
‘probabilistic programming’ is now often used to refer to the
entire range of platforms, from universal PPLs to simple PGM
frameworks. Unless we explicitly say otherwise, however, we
will henceforth reserve ‘probabilistic programming’ and ‘PPL’
for platforms that implement universal modeling languages.

Inference in PPLs is typically supported by constructs that
take a model description as input. Returning to the previous ex-
ample, the joint posterior distribution is inferred by calling the
built-in Infer function with the model, the desired inference al-
gorithm, and the inference parameters as arguments (Algorithm
4).

Algorithm 4 Specifying inference strategy in WebPPL

1 Infer({model: model, method: ’SMC’, particles: 10000})

To develop this example into a probabilistic program equiva-
lent to the RevBayes model discussed previously (Algorithm 1),
we just need to describe the CRBD process along the observed
tree, conditioning on all unobserved side branches going extinct
(Supplementary Algorithms 2 and 3). The PPL specification of
the CRBD inference problem is longer than the PGM specifi-
cation because it does not use the analytical expression for the
CRBD density. However, it exposes all the details of the diver-
sification process, so it can be used as a template for exploring
a wide variety of diversification models, while relying on the
same inference machinery throughout. We will take advantage
of this in the following.

Diversification models. The simplest model describing bio-
logical diversification is the Yule (pure birth) process19,20, in
which lineages speciate at rate λ but never go extinct. For con-
sistency, we will refer to it as constant rate birth (CRB). The
CRBD model21 discussed in the examples above adds extinction
to the process, at a per-lineage rate of µ.

An obvious extension of the CRBD model is to let the spe-
ciation and/or extinction rate vary over time instead of being
constant22, referred to as the generalized birth-death process.
Here, we will consider variation in birth rate over time, keeping
turnover (µ/λ) constant, and we will refer to this as the time-
dependent birth-death (TDBD) model, or the time-dependent
birth (TDB) model when there is no extinction. Specifically, we
will consider the function

λ(t) = λ0ez(t0−t), (1)

where λ0 is the initial speciation rate at time t0, t is current time,
and z determines the nature of the dependency. When z > 0,
the birth rate grows exponentially and the number of lineages
explodes. The case z < 0 is more interesting biologically; it
corresponds to a niche-filling scenario. This is the idea that an
increasing number of lineages leads to competition for resources
and—all other things being equal—to a decrease in speciation
rate. Other potential causes for slowing speciation rates over
time have also been considered23.

The four basic diversification models—CRB, CRBD, TDB
and TDBD—are tightly linked (Figure 3). When z = 0, TDBD
collapses to CRBD, and TDB to CRB. Similarly, when µ = 0,
CRBD becomes equivalent to CRB, and TDBD to TDB.

CRB

CRBD

LSBDS TDBD

BAMM

TDB

ClaDS1

ClaDS0

ClaDS2

ε = 0

α = 1
σ → 0

z = 0 η → 0

µ = 0

α = 1
σ → 0

η → 0

z = 0 µ = 0

α = 1
σ → 0

µ = 0

z = 0

Fig. 3 Relations between the diversification models considered
in the paper. Arrows and symbols mark the variable transformations
needed to convert one diversification model into another.

In recent years, there has been a spate of work on models
that allow diversification rates to vary across lineages. Such
models can accommodate diversification processes that gradu-
ally change over time. They can also explain sudden shifts in
speciation or extinction rates, perhaps due to the origin of new
traits or other factors that are specific to a lineage.

One of the first models of this kind to be proposed was
Bayesian analysis of macroevolutionary mixtures (BAMM)17.
The model is a lineage-specific, episodic TDBD model. A group
starts out evolving under some TDBD process, with extinction
(µ) rather than turnover (ϵ) being constant over time. A stochas-
tic process running along the tree then changes the parameters
of the TDBD process at specific points in time. Specifically, λ0,
µ and z are all redrawn from the priors at these switch points. In
the original description, the switching process was defined in a
statistically incoherent way; here, we assume that the switches
occur according to a Poisson process with rate η, following a
previous analysis of the model18.

The BAMM model has been implemented in dedicated soft-
ware using a combination of MCMC sampling and other numer-
ical approximation methods17,24. The implementation has been
criticized because it can result in severely biased inference18.
To date, it has not been possible to provide asymptotically exact
inference machinery for BAMM.

In a recent contribution, a simplified version of BAMM
was introduced: the lineage-specific birth-death-shift (LSBDS)
model16. LSBDS is an episodic CRBD model, that is, it is
equivalent to BAMM when z = 0. Inference machinery for
the LSBDS model has been implemented in RevBayes5 based
on numerical integration over discretized prior distributions for
λ and µ, combined with MCMC. The computational complex-
ity of this solution depends strongly on the number of discrete
categories used. If k categories are used for both λ and µ, com-
putational complexity is multiplied by a factor k2. Therefore, it
is tempting to simplify the model. We note that, in the empirical
LSBDS examples given so far, µ is kept constant and only λ
is allowed to change at switch points16. When z = 0, BAMM
collapses to LSBDS, and when η → 0 it collapses to TDBD
(Figure 3). When η→ 0, LSBDS collapses to CRBD.
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A different perspective is represented by the cladogenetic
diversification rate shift (ClaDS) models15. They map diversi-
fication rate changes to speciation events, assuming that diver-
sification rates change in small steps over the entire tree. After
speciation, each descendant lineage inherits its initial speciation
rate λi from the ending speciation rate λa of its ancestor through
a mechanism that includes both a deterministic long-term trend
and a stochastic effect. Specifically,

log λi ∼ N
(
log(αλa), σ2

)
. (2)

The α parameter determines the long-term trend, and its effects
are similar to the z parameter of TDBD and BAMM. When
α < 1, that is, logα < 0, the speciation rate of a lineage tends
to decrease over time. The standard deviation σ determines
the noise component. The larger the value, the more stochastic
fluctuation there will be in speciation rates.

The original ClaDS paper15 focuses on the rate multiplier
m = α ∗ exp(σ2/2) rather than on α, but we prefer the α param-
eterization mainly because it allows us to specify a conjugate
prior that makes SMC inference more efficient (Supplementary
Section 3). As pointed out elsewhere25, the dynamics of the
ClaDS models is complex and differs considerably from super-
ficially similar models, such as the BAMM, TDBD and TDB
models (for further discussion of this point, see Supplementary
Section 3).

There are three different versions of ClaDS, characterized by
how they model µ. In ClaDS0, there is no extinction, that is,
µ = 0. In ClaDS1, there is a constant extinction rate µ through-
out the tree. Finally, in ClaDS2, it is the turnover rate ϵ = µ/λ
that is kept constant over the tree. All ClaDS models collapse
to CRB or CRBD models when α = 1 and σ → 0 (Figure 3).
The ClaDS models were initially implemented in the R pack-
age RPANDA26, using a combination of advanced numerical
solvers and MCMC simulation15. A new implementation of
ClaDS2 in Julia instead relies on data augmentation25.

In contrast to previous work, where these models are imple-
mented independently in complex software packages, we used
PPL model descriptions (∼ 100 lines of code each) to generate
efficient and asymptotically correct inference machinery for all
diversification models described above. The machinery we gen-
erate relies on SMC algorithms which, unlike classical MCMC,
can also estimate the marginal likelihood (the normalization
constant of Bayes theorem).

Estimating the marginal likelihood of a probability distribu-
tion that is only known up to a constant of proportionality is
a hard problem in general. However, if we know how to sam-
ple from a similar distribution, classical importance sampling
can provide a good estimate. The SMC algorithm is based on
consecutive importance sampling from a series of probability
distributions that change slowly towards the posterior distribu-
tion of interest. Thus, by piecing together the normalization
constant estimates obtained in each of these steps, a good es-
timate of the marginal likelihood of the model is obtained es-
sentially as a byproduct in the SMC algorithm27,28. Such series
of similar probability distributions are not available naturally
in the MCMC algorithm, but have to be constructed in more
involved, computationally complex procedures, such as ther-
modynamic integration29,30, annealed importance sampling31

or stepping-stone sampling32.
Using the SMC machinery, we then compared the perfor-

mance of the different diversification models on empirical

data by inferring the posterior distribution over the parame-
ters of interest, and by conducting model comparison based on
the marginal likelihood (Bayes factors). Specifically, we im-
plemented the CRB, CRBD, TDB, TDBD, BAMM, LSBDS,
ClaDS0, ClaDS1 and ClaDS2 models in WebPPL and Birch.
The model descriptions are provided at https://github.
com/phyppl/probabilistic-programming. They are sim-
ilar in structure to the CRBD program presented above.

Inference strategies. We used inference algorithms in the
SMC family, an option available in both WebPPL and Birch. An
SMC algorithm33,34,35 runs many simulations (called particles)
in parallel, and stops them when some new information, like
the time of a speciation event or extinction of a side lineage,
becomes available. At such points, the particles are subjected
to resampling, that is, sampling (with replacement) based on
their likelihoods. SMC algorithms work particularly well when
the model can be written such that the information derived
from observed data can successively be brought to bear on the
likelihood of a particle during the simulation. This is the case
when simulating a diversification process along a tree of extant
taxa, because we know that each ‘hidden’ speciation event must
eventually result in extinction of the unobserved side lineage.
That is, we can condition the simulation on extinction of the side
branches that arise (Supplementary Algorithm 3). Similarly,
we can condition the simulation on the times of the speciation
events leading to extant taxa.

Despite this, standard SMC (the bootstrap particle filter) re-
mains relatively inefficient for these models, and is unlikely to
yield adequate samples of the posterior for real problems given
realistic computational budgets. Therefore, we employed three
new PPL inference techniques that we developed or extended
as part of this study: alignment36, delayed sampling13 and the
alive particle filter37 (see Methods).

Empirical results. To demonstrate the power of the approach,
we applied PPLs to compare the performance of the nine diversi-
fication models discussed above for 40 bird clades (see Methods
and Supplementary Table 6). The results (Supplementary Fig-
ures 13–22) are well summarized by the four cases presented
in Figure 4. Focusing on marginal likelihoods (top row), we
observe that the simplest models (CRB, CRBD), without any
variation through time or between lineages, provide an adequate
description of the diversification process for around 40% of the
trees (Figure 4 Alcedinidae). In the remaining clades, there is
almost universal support for slowing diversification rates over
time. Occasionally, this is not accompanied by strong evidence
for lineage-specific effects (Figure 4 Muscicapidae-+) but usu-
ally it is (Figure 4 Accipitridae and Lari). In the latter case, the
ClaDS models always show higher marginal likelihoods than
BAMM and LSBDS, and this even for trees on which the lat-
ter do detect rate shifts (Figure 4 Lari). Interestingly, ClaDS2
rarely outperforms ClaDS0, which assumes no extinction. More
generally, models assuming no extinction often have a higher
marginal likelihood than their counterparts allowing for it.

The parameter estimates (Figure 4) show the conservative na-
ture of the Bayes factor tests, driven by the relatively vague pri-
ors we chose on the additional parameters of the more complex
models (Supplementary Figure 2). However, even when com-
plex models are marginally worse than simple or no-extinction
models, there is evidence of the kind of variation they allow.
For instance, the posterior distributions on z and logα suggest
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that negative time-dependence is quite generally present. Sim-
ilarly, more sophisticated models usually detect low levels of
extinction when they are outperformed by extinction-free coun-
terparts. For a more extensive discussion of these and other
results, see Supplementary Section 10.

Discussion

Universal PPLs provide stochastic recursion and dynamic cre-
ation of an unbounded number of random variables, which
makes it possible to express virtually any interesting phylo-
genetic model. The expressiveness of PPLs is liberating for
empiricists but it forces statisticians and computer scientists to
approach the inference problem from a more abstract perspec-
tive. This can be challenging but also rewarding, as inference
techniques for PPLs are so broadly applicable. Importantly,
expressing phylogenetic models as PPLs opens up the possibil-
ity to apply a wide range of inference strategies developed for
scientific problems with no direct relation to phylogenetics. An-
other benefit is that PPLs reduce the amount of manually written
code for a particular inference problem, facilitating the task and
minimizing the risk of inadvertently introducing errors, biases
or inaccuracies. Our verification experiments (Supplementary
Section 7) suggest that the light-weight PPL implementations
of ClaDS1 and ClaDS2 provide more accurate computation of
likelihoods than the thousands of lines of code developed in the
initial implementation of these models15.

Previous discussion on the relative merits of diversification
models have centered around the results of simulations and
arguments over biological realism17,18,39,15,16, and it has been
complicated by the lack of asymptotically correct inference ma-
chinery for BAMM18,39. Our most important contribution in
this context is the refinement of PPL techniques so that it is
now possible to implement correct and efficient parameter in-
ference under a wide range of diversification models, and to
compare their performance on real data using rigorous model
testing procedures.

The PPL analyses of bird clades confirm previous claims
that the ClaDS models provide a better description of lineage-
specific diversification than BAMM15. Even when simpler
models have higher likelihoods, the ClaDS models seem to pick
up a consistent signal across clades of small, gradual changes
in diversification rates. Like many previous studies40, our anal-
yses provide little or no support for extinction rates above zero.
This might be due in part to systematic biases in the sampling
of the leaves in the observed trees41,42, a problem that could
be addressed by extending our PPL model scripts (Supplemen-
tary Section 10.6). Such sampling biases can also give the
impression of slowing diversification rates even when rates are
constant, potentially explaining some of the support for nega-
tive values of z and logα in our posterior estimates. We want
to emphasize, however, that there is a range of other possible
explanations for these patterns23. The idea that lineage-specific
variation in diversification rates might be responsible for low es-
timates of extinction rates in analyses using simpler models43,44

finds little support in our results but we cannot exclude the possi-
bility that even more sophisticated lineage-specific models than
the ones considered here might provide evidence in favor of this
hypothesis. An interesting observation is that models with con-
stant turnover (as in ClaDS2) appear to fit empirical data better
than those with constant extinction (as in ClaDS1), even though

constant extinction has been commonly assumed in previous
studies. A fascinating question that is now open to investigation
is whether there remains evidence of occasional major shifts in
diversification rates once the small gradual changes have been
accounted for, something that could be addressed by a model
that combines ClaDS- and BAMM-like features.

Our results show that PPLs can already now compete success-
fully with dedicated special-purpose software in several phylo-
genetic problem domains. Separately, we show how PPLs can
be applied to models where diversification rates are dependent
on observable traits of organisms (so-called state-dependent
speciation and extinction models)37. Other problem domains
that may benefit from the PPL approach already at this point
include epidemiology45, host-parasite co-evolution46, and bio-
geography47,48,49,50.

What is missing before it becomes possible to generate ef-
ficient inference machinery for the full range of phylogenetic
models from PPL descriptions? Assume, for instance, that
we would like to do joint inference of phylogeny (say from
DNA sequence data) and diversification processes, instead of
assuming that the extant tree is observed. This would seem
to touch on the major obstacles that remain. We then need to
extend our current PPL models so that they also describe the
nucleotide substitution process along the tree, and condition the
simulation on the observed sequences. To generate the standard
MCMC machinery for sampling across trees from such descrip-
tions, delayed sampling needs to be extended to summarize over
ancestral sequences (Felsenstein’s pruning algorithm)51, and it
should be applied statically through analysis of the script be-
fore the MCMC starts rather than dynamically. State-of-the-art
MCMC algorithms for PPLs12 must then be extended to gen-
erate computationally efficient tree samplers, such as stochastic
nearest neighbour interchange52. Applying SMC algorithms for
sampling across trees53 is even simpler, it just requires delayed
sampling to summarize over ancestral sequences. To facilitate
use of PPLs, we think it will also be important to provide a
domain-specific PPL that is easy to use, while supporting both
automatic state-of-the-art inference algorithms for phylogenetic
problems as well as manual composition of novel inference
strategies suited for this application domain. These all seem
to be tractable problems, which we aim to address within the
TreePPL project (treeppl.org).

As the field of probabilistic programming is currently in a
phase of intense experimentation, new PPL platforms—both
universal and non-universal—are continuously presented and
many existing ones are actively developed. Several of these
platforms are likely to be useful for phylogenetic problems,
not the least since they explore novel inference algorithms—
such as automatic variational inference54, adaptive Hamilto-
nian Monte Carlo55, non-reversible parallel tempering56 or se-
quential change of measure57—that have only recently started
to find their way into statistical phylogenetics58,6,59. Interesting
platforms include not only RevBayes5, specifically designed for
phylogenetics, but also more general platforms such as STAN60,
Anglican10, PyMC361, Edward62, Pyro63 and Blang7. We
think that evolutionary biologists exploring these new tools will
be excited by the expressivity of universal PPLs and the gener-
ality across model space of the automated inference solutions
designed for them. With this in mind, we invite readers with
an interest in computational methods to join us and others in
developing languages and inference strategies supporting this
powerful new approach to statistical phylogenetics.
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σ
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

η

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 4 Comparison of diversification models for four bird clades exemplifying different patterns. Alcedinidae: simple models are ade-
quate; Muscicapidae-+: slowing diversification but no or weak lineage-specific effects; Accipitridae: gradual (ClaDS) lineage-specific changes
in diversification; and Lari: evidence for both gradual (ClaDS) and for punctuated (BAMM and LSBDS) lineage-specific changes in diversification.
The top row shows the estimated marginal likelihoods (log scale; violin plots with a dot marking the median estimate). A difference of 5 units
(scale bar) is considered strong evidence in favor of the better model38. The remaining rows show estimated posterior distributions for different
model parameters specified along the left margin. The µ distributions are shown with dashed lines, all other distributions with unbroken lines.
The colors represent different models (see legend).
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Methods
PPL software and model scripts. All PPL analyses described
here used WebPPL version 0.9.15, Node version 12.13.19 and
the most recent development version of Birch (as of June 12,
2020)14. We implemented all models (CRB, CRBD, TDB,
TDBD, ClaDS0, ClaDS1, ClaDS2, LSBDS and BAMM) as
explicit simulation scripts that follow the structure of the CRBD
example discussed in the main text (Supplementary Section 5).
We also implemented compact simulations for the four simplest
models (CRB, CRBD, TDB and TDBD) using the analytical
equations for specific values of λ, µ and z to compute the
probability of the observed trees.

In the PPL model descriptions, we account for incomplete
sampling of the tips in the phylogeny based on the ρ-sampling
model64. That is, each tip is assumed to be sampled with
a probability ρ, which is specified a priori. To simplify the
presentation in this paper, we usually assume ρ = 1. However,
the model scripts we developed support ρ < 1, and in the
empirical analyses we set ρ for each bird tree to the proportion
of the known species included in the tree.

We standardized prior distributions across models to facilitate
model comparisons (Supplementary Section 4, Supplementary
Figure 2). To simplify the scripts, we simulated outcomes on
ordered but unlabeled trees, and reweighted the particles so that
the generated density was correct for labelled and unordered
trees (Supplementary Section 3.2). We also developed an effi-
cient simulation procedure to correct for survivorship bias, that
is, the fact that we can only observe trees that survive until the
present (Supplementary Section 5.3).

Inference strategies. To make SMC algorithms more effi-
cient on diversification model scripts, we applied three new
PPL inference techniques: alignment, delayed sampling, and
the alive particle filter. Alignment 36,65 refers to the synchro-
nization of resampling points across simulations (particles) in
the SMC algorithm. The SMC algorithms previously used for
PPLs automatically resample particles when they reach observe
or condition statements. Diversification simulation scripts will
have different numbers and placements of hidden speciation
events on the surviving tree (Figure 2), each associated with a
condition statement in a naive script. Therefore, when particles
are compared at resampling points, some may have processed
a much larger part of the observed tree than others. Intuitively,
one would expect the algorithm to perform better if the resam-
pling points were aligned, such that the particles have processed
the same portion of the tree when they are compared. This is
indeed the case; alignment is particularly important for efficient
inference on large trees (Supplementary Figure 3). Alignment
at code branching points (corresponding to observed speciation
events in the diversification model scripts) can be generated
automatically through static analysis of model scripts36. Here,
we manually aligned the scripts by replacing the statements that
normally trigger resampling with code that accumulate proba-
bilities when they did not occur at the desired locations in the
simulation (Supplementary Section 6.1).

Delayed sampling13 is a technique that uses conjugacy to
avoid sampling parameter values. For instance, the gamma
distribution we used for λ and µ is a conjugate prior to the
Poisson distribution, describing the number of births or deaths
expected to occur in a given time period. This means that
we can marginalize out the rate, and simulate the number of

events directly from its marginal (gamma-Poisson) distribution,
without having to first draw a specific value of λ or µ. In this
way, a single particle can cover a portion of parameter space,
rather than just single values of λ and µ. Delayed sampling is
only available in Birch; we extended it to cover all conjugacy
relations relevant for the diversification models examined here.

The alive particle filter 37 is a technique for improving SMC
algorithms when some particles can ‘die’ because their like-
lihood becomes zero. This happens when SMC is applied to
diversification models because simulations that generate hid-
den side branches surviving to the present need to be discarded.
The alive particle filter is a generic improvement on SMC, and
it collapses to standard SMC with negligible overhead when no
particles die. This improved version of SMC, partly inspired by
our work on state-dependent speciation-extinction models37, is
only available in Birch.

Verification. To verify that the model scripts and the automat-
ically generated inference algorithms are correct, we performed
a series of tests focusing on the normalization constant (Sup-
plementary Section 7). First, we checked that the model scripts
for simple models (CRB(D) and TDB(D)) generated normal-
ization constant estimates that were consistent with analytically
computed likelihoods for specific model parameter values (Sup-
plementary Figure 4). Second, we used the fact that all advanced
diversification models (ClaDS0-2, LSBDS, BAMM) collapse to
the CRBD model under specific conditions, and verified that we
obtained the correct likelihoods for a range of parameter values
(Supplementary Figure 6). Third, we verified for the advanced
models that the independently implemented model scripts and
the inference algorithms generated for them by WebPPL and
Birch, respectively, estimated the same normalization constant
for a range of model parameter values (Supplementary Fig-
ure 7). Fourth, we checked that our normalization constant
estimates were consistent with the RPANDA package26,15 for
ClaDS0, ClaDS1, and ClaDS2, and with RevBayes for LS-
BDS5,16. For these tests, we had to develop specialized PPL
scripts emulating the likelihood computations of RPANDA and
RevBayes. The normalization constant estimates matched for
LSBDS (Supplementary Figure 9) and for ClaDS0 (Supplemen-
tary Figure 8); for ClaDS1 and ClaDS2, they matched for low
values of λ and µ (or ϵ) but not for larger values (Supplementary
Figure 8). Our best-effort interpretation at this point is that the
PPL estimates for ClaDS1 and ClaDS2 are more accurate than
those obtained from RPANDA for these values (Supplementary
Section 7.4). Finally, as there is no independent software that
computes BAMM likelihoods correctly yet, we checked that our
BAMM scripts gave the same normalization constant estimates
as LSBDS under settings where the former model collapses to
the latter (Supplementary Figure 10).

Data. We applied our PPL scripts to 40 bird clades derived
from a previous analysis of divergence times and relationships
among all bird species66. The selected clades are those with
more than 50 species (range 54–316) after outgroups had been
excluded (Supplementary Table 6). We followed the previous
ClaDS2 analysis of these clades15 in converting the time scale
of the source trees to absolute time units. The clade ages range
from 12.5 Ma to 66.6 Ma.

Bayesian inference. Based on JavaScript, WebPPL is com-
paratively slow, making it less useful for high-precision com-

96 PAPERS



putation of normalization constants or estimation of posterior
probability distributions using many particles. WebPPL is also
less efficient than Birch because it does not yet support delayed
sampling and the alive particle filter. Delayed sampling, in
particular, substantially improves the quality of the posterior
estimates obtained with a given number of particles. Therefore,
we focused on Birch in computing normalization constants and
posterior estimates for the bird clades.

For each tree, we ran the programs implementing the ClaDS,
BAMM and LSBDS models using SMC with delayed sampling
and the alive particle filter as the inference method. We ran
each program 500 times and collected the estimates of log Z
from each run together with the information needed to estimate
the posterior distributions. The quality of the normalization
constant estimates (on the log scale) from these 500 runs was
estimated using the standard deviation, as well as the relative
effective sample size and the conditional acceptance rate (Sup-
plementary Section 9). We initially set the number of SMC
particles to 5,000, which was sufficient to obtain high-quality
estimates for all models except BAMM (Supplementary Ta-
ble 7). We increased the number of particles to 20,000 for
BAMM to obtain estimates of acceptable quality for this model.

For CRB, CRBD, TDB and TDBD we exploited the closed
form for the likelihood in the programs. We used importance
sampling with 10,000 particles as the inference method, and ran
each program 500 times. This was sufficient to obtain estimates
of very high accuracy for all models (Supplementary Table 7).
The computational resources we used to obtain the results are
specified in Supplementary Table 8.

Visualization. Visualizations were prepared with Mat-
plotlib67. We used the collected data from all runs to draw
violin plots for log Ẑ as well as the posterior distributions for λ,
µ (for all models), z (for TDB, TDBD and BAMM), logα and
σ2 (for the ClaDS models), and η (for LSBDS and BAMM).
By virtue of delayed sampling, the posterior distributions for
λ and µ for all ClaDS models, as well as for BAMM and LS-
BDS, were calculated as mixtures of gamma distributions, the
posterior distribution for logα and σ2 for all ClaDS models
as mixtures of normal inverse gamma and inverse gamma dis-
tributions, and the posterior distribution for η for BAMM and
LSBDS as a mixture of gamma distributions. For the remaining
model parameters, we used the kernel density estimation (KDE)
method. Exact plot settings and plot data are provided in the
code repository accompanying the paper.

Reporting Summary Further information on research design
is available in the Nature Research Reporting Summary linked
to this article.

Data availability

The dated phylogenetic trees used to compare the diversifi-
cation models, together with full literature references, can be
found at https://github.com/phyppl/probabilistic-
programming, under the directory data. Supplemen-
tary information is available at https://github.com/
phyppl/probabilistic-programming under the directory
supplementary.

Code availability
The WebPPL and Birch models can be found in the same repos-
itory, https://github.com/phyppl/probabilistic-
programming, under the directories webppl and birch.
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1 Probabilistic programming: an introduction
In this section, we give a brief introduction to (universal) probabilistic programming languages (PPLs), focusing on the key
constructs that are available in most PPLs. First, we give a short overview of different PPLs, followed by an introduction to three
essential concepts in probabilistic programming: (i) sampling, (ii) conditioning, and (iii) inference. These concepts are illustrated
here in the WebPPL languagea, which is based on a functional subsetb of the JavaScript language.

1.1 Overview
A central objective of probabilistic programming is to separate the model from the inference algorithm, such that a user can
construct and use a probabilistic model without the need to implement the inference algorithm explicitly. Instead, it is the task of
the runtime system of the PPL to automatically perform the inference, potentially based on some method preferences specified
by the user.

Programming and modeling languages that separate the model specification from the inference algorithm have been around
for several decades. One of the first of these languages is BUGS (Bayesian inference Using Gibbs Sampling)1. BUGS allows
users to describe probabilistic graphical models2—in particular Bayesian networks—in a declarative way. The model parameters
of interest are then estimated by automatically applying Bayesian inference using Gibbs sampling (and some other methods).
More recent languages that separate modeling and inference of graphical models include Infer.NET3.

Although the above-mentioned languages and environments have shown great success in their application areas, they have
certain model restrictions. In particular, they are limited to models where the dependencies between random variables can be
expressed as a Bayesian network, that is, a finite directed acyclic graph, potentially with if-then-else conditions over variables. In
some domains, this is not sufficient to describe the models of interest. Rather recently, the concept of probabilistic programming
languages4 has gained significant attention as a promising solution, in particular within the machine learning and programming
language communities. The key idea of this new paradigm is to extend Turing-complete programming languages with probabilistic
operations that include, for example, the drawing of (random) samples from a given probability distribution, the conditioning of
random variables on observed outcomes, and the marginalization of random variables5,6.

Such languages are sometimes referred to as universal probabilistic programming languages to clearly differentiate them from
languages based on Bayesian networks, which have sometimes in recent years also been included in the probabilistic programming
family. Here, we will use the terms “probabilistic programming” and “probabilistic programming language (PPL)” exclusively
for universal languages.

Turing-completeness is an important concept in computer science, describing how expressive a programming language is.
The famous Church-Turing thesis conjectures that any function, whose value can be computed by an algorithm, can be computed
by a Turing-complete programming language. For instance, PPLs make it possible to use recursion (or loops) dependent on a
stochastic expression when defining probabilistic models. This means that the graphical network describing the model is dynamic
and can change during inference due to random sampling and observed data. In a PPL, the probabilistic model is a program,
where the inference algorithm is not part of that program (the model). Hence, an alternative and potentially more intuitive name
for a probabilistic program may be a programmatic model: a model that is implemented as a program.

One of the earliest PPLs is Church7, which extends a functional subset of the Scheme programming language. Other
PPLs (both universal and non-universal) include Figaro8 (a PPL embedded in Scala), WebPPL9 (a recent PPL embedded into
JavaScript), Anglican10 (a general-purpose PPL embedded into Clojure that runs on the Java virtual machine), Venture11 (a
PPL with syntax similar to JavaScript), Edward12 (a Python library for probabilistic modelling), Pyro13 (a PPL built on top of

∗E-mail: fredrik.ronquist@nrm.se
†F.R., J.K., and V.S. contributed equally to this work.
ahttp://webppl.org
bFunctional programming (FP) is a programming paradigm, in which code is structured in units called functions that have no side effects; i.e. they only operate

on a given input and produce an output but do not manipulate external objects.
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Fig. 1 A Prior distribution of the bias for the coin flip example. B Posterior distribution of the bias after observing heads once. C Mixture model
of two Gaussian models mixed using stochastic branching. D Resulting geometric distribution with p = 0.6. All plots are generated using the
WebPPL environment.

PyTorch), Birch14 (a PPL that compiles into C++), and Stan15 (a platform for statistical modelling and computation). Note that
this list is far from complete, and there exist many more experimental PPLs.

In this paper, WebPPL and Birch have been used for the reason of simplicity and efficiency, respectively. Some of the authors
of this paper are currently developing a new domain-specific probabilistic programming language on top of theMiking16 platform.
This language, called TreePPL c, is designed specifically for the domain of statistical phylogenetics.

In the rest of this section, we describe the key concepts of probabilistic programming. The examples are given in WebPPL,
but could easily be translated into any of the other universal PPLs. The WebPPL code can be run in a web browser through
the WebPPL project web page d. For a more comprehensive introduction to probabilistic programming, see for example the
introductory text by van de Meent et al.17.

1.2 Sampling
The first key construct in probabilistic programs is sample, meaning that a value is drawn from a given probability distribution.
Consider the following WebPPL code:
sample(Bernoulli({p: 0.5}))

The program models a simple coin flip scenario, where we sample from the Bernoulli distribution with probability 0.5, that is, a
fair coin. When executed, the program returns either true or false, with probabilities corresponding to the sampled distribution.

Suppose we instead introduce another random variable x that models the probability of getting heads on the toss of the coin.
Mathematically, such a model can be defined as follows:

x ∼ Beta(α, β)
y ∼ Bernoulli(x)

where the beta distribution is used as a prior probability distribution for the value of x. The same model can be written as a PPL
program (assuming we set α = β = 2)

var x = sample(Beta({a: 2, b: 2}))
var y = sample(Bernoulli({p: x}))

Note that the sample construct is conceptually used to denote random variables, in this case the two variables x and y. If we
run the program many times and plot the values of x, we get an approximation of the probability density function (PDF) for x in
our mathematical model, that is, an approximation of the Beta(2, 2) distribution. Because the expected value of x is 0.5, y in the
program still models an unbiased coin.

1.3 Conditioning and observations
Probabilistic programs are based on Bayesian statistics, and typically are intended to compute the posterior distribution, given a
prior distribution and some observations. In the coin flip example, suppose we observe heads (encoded as true) after flipping
the coin once. We want to infer p(x |y), the posterior distribution of x, conditioned on the new observation y = true. As in the
previous example, we assume that the prior distribution of x is Beta(2, 2). This model can be defined as follows.
var coinFlip = function() {
var x = sample(Beta({a: 2, b: 2}))
observe(Bernoulli({p: x}), true)
return x

}

chttps://treeppl.org/
dhttp://webppl.org
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Note how the second sample construct is replaced with an observe construct. The program returns x, which is a (weighted)
sample from the posterior distribution of x, computed by updating the prior distribution of x (defined explicitly in the model) with
the observation that the coin flip resulted in true (conditioning on the observation). Supplementary Figure 1A shows the prior
distribution of the bias x, which corresponds to the Beta(2, 2) distribution. Note how the posterior distribution in Supplementary
Figure 1B has moved closer to 1 (bias towards heads), compared to the prior distribution.

The observe statement is a way of weighting a sample according to some distribution. It is basically equivalent to sampling
from a distribution, followed by conditioning, using the condition statement covered in the main texte. In WebPPL, there is also
a construct called factor, which performs explicit weighting (also called scoring) of samples. A score or weight for a specific
value can be computed using a distribution’s PDF. In WebPPL, there is a score method that gives back the score of a value for
a specific distribution. Thus, the observe statement in the previous example could be replaced with the following equivalent
encoding using factor:

factor(Bernoulli({p: x}).score(true))

The factor construct is often used explicitly in the phylogenetic models described in this paper, especially in WebPPL.

1.4 Recursive models and stochastic branching
In the previous examples, the models were very simple. However, the power of universal probabilistic programming is that a
model can be any program, which may include variable declarations and standard control flow operators. Consider the following
program that includes an if statement:
var mixture = function(){
if (sample(Bernoulli({p: 0.7}))) {
return sample(Gaussian({mu: -2, sigma: 1}))
} else {
return sample(Gaussian({mu: 3, sigma: 1}))
}
}

The model illustrates the use of stochastic branching, meaning that the paths taken in a program depend on the outcome of
sampling. In the example, the guard of the if statement samples from the Bernoulli distribution. Depending on whether the
true or false branch is taken, sampling of the resulting value is done with different Gaussian distributions (different µ values).
The plot of the model is shown in Supplementary Figure 1C. As can be seen in the figure, the true branch has larger weight,
because of the probability of 0.7 of it being chosen.

Stochastic branching can be combined with recursion: this is a key building block for phylogenetic models. Consider the
following model, which describes a model of the geometric distribution:
var geometric = function(p) {
if (sample(Bernoulli({p: p}))) {
return 1

} else {
return geometric(p) + 1

}
}

Note that there is no requirement of a deterministic termination of the recursion: the termination of the recursion depends on the
stochastic branch, which each time depends on a different latent random variable. Supplementary Figure 1D shows the plot of
geometric(0.6). The simple recursion above generates a linear sequence of random length. We use similar recursions in our
scripts to model the processes that generate bifurcating phylogenetic trees. We do that by including two recursive calls within the
same function, one for each descendant of a speciation event.

1.5 Inference
The focus of this tutorial text has so far been on the model (the probabilistic program), and not on the inference algorithms. As
discussed previously, in probabilistic programming, the choice of inference algorithm is intentionally separated from the model.
For instance, using the Infer method of WebPPL, a user can apply the Sequential Monte Carlo (SMC) method to perform the
inference of the coin example
Infer({model: coinFlip, method: ’SMC’, particles: 20000})

or, alternatively, a Markov chain Monte Carlo (MCMC) method can be used:
Infer({model: coinFlip, method: ’MCMC’, samples: 20000, burn: 5000})

The user also needs to specify the granularity of the approximation, using the number of particles or samples for SMC or MCMC,
respectively.

In general, a key strength of the probabilistic programming paradigm is its expressive power, which is clearly shown in this
paper within the domain of phylogenetics. One of the main research challenges within the PPL community is how to develop

eAccording to the WebPPL documentation, for efficiency, the observe statement should be used instead of the combination of sampling and conditioning,
especially for continuous distributions.
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inference algorithms and compilers that scale to very large and complex models. Although this is an active area of research,
our study hopefully demonstrates that already state-of-the-art PPL systems make it possible to perform effective inference on
non-trivial phylogenetic models.

2 Tools for phylogenetic probabilistic programming
The paper is accompanied by a code repository containing all the sources, tools and data used for the study, including documen-
tation. Specifically, the resources in the repository are designed to facilitate the use of two existing probabilistic programming
languages—WebPPL and Birch—for phylogenetic inference. The code repository is available at:

https://github.com/phyppl/probabilistic-programming

The reader is referred to the README.md file in the repository, in which we describe how to install the tools and how to use
them to rerun our analyses or to experiment with probabilistic programming for phylogenetic problems.

2.1 WebPPL for statistical phylogenetics
WebPPL is a universal probabilistic programming language based on JavaScript. We have written two packages, phywppl and
phyjs that enable the reader to run phylogenetic simulations in WebPPL. The verification of the WebPPL programs relies on an
auxiliary R package, rppl. Please refer to the aforementioned online documentation for further explanation.

2.2 Birch for statistical phylogenetics
Birch is a universal probabilistic programming language compiling into C++. The models presented in this paper are run like
regular Birch packages. Refer to the aforementioned online documentation for further explanation.

2.3 Reading in phylogenetic trees
The WebPPL and Birch scripts we provide either simulate the diversification process along an observed reconstructed tree or
computes the likelihood using analytical equations for such a tree. To facilitate the import of the observed tree data, we use a new
JSON format for phylogenetic trees named PhyJSON18. Supported by the resources we provide in the repository, both WebPPL
and Birch have mechanisms for reading in phylogenetic trees stored in the PhyJSON format. We also provide a stand-alone tool,
nexus2phyjson, which can be used to convert trees in Nexus tree files to PhyJSON format18.

For convenience, we include several phylogenetic trees in the phyjs package for purposes such as testing and verification
(Table 1). An up-to-date account of the included test trees is provided in the webppl/phyjs/README.md file.

3 Diversification models

3.1 Basic notation and terminology
All of the diversification models considered in this study can be generically described as follows (see Table 2 for a summary
of the notation). The process starts at some time t0 > 0 in the past, where t = 0 represents the present time. Evolutionary
lineages split (speciate) at a per-lineage rate λ and go extinct at per-lineage rate µ. The rates λ and µ are either constant,
time-dependent or lineage-dependent, depending on the specific model. Each speciation event produces two lineages that further
evolve independently of each other. The process is stopped when reaching the present (t = 0), at which point lineages still
surviving are sampled (included in the observed tree) with probability ρ ≤ 1.

The diversification process generates both trees with lineages that survive until the present, and trees that go completely
extinct. Many surviving trees include side branches or whole subtrees that went extinct along the way. If the extinct parts and
the branches leading to unsampled taxa are pruned away, we get what is called the “reconstructed tree”. In other words, the
reconstructed tree is the subtree spanned by only those surviving lineages that have been sampled.

In diversification analyses, the focus is typically on reconstructed trees. For simplicity, we assume here that the reconstructed
tree is knownwithout error, butwe note that it is straightforward to extend our probabilistic programming approach to accommodate
uncertainty about the tree by drawing the tree from an appropriate tree sample. Learning the parameters of the diversification
process involves computing the likelihood of one or more reconstructed trees given different parameter values.

Table 1 Example trees provided in the phyjs package.

Tree Leaves Age (Ma) Description Reference

phyjs.bisse_32 32 13.0 Example tree from Mesquite software 19

phyjs.cetacean_87 87 35.9 Cetacean tree from BAMMtools package 20

phyjs.primates_233 233 65.1 Primate tree from Diversitree package 21
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Table 2 Summary of notation.

Symbol Interpretation

λ speciation (birth) rate
µ extinction (death) rate
ε turnover, µ/λ
ρ probability of sampling a leaf
λ(t) function characterizing time dependence of λ in some models
λ0 initial λ, when λ varies over time
z rate of exponential increase or decrease in λ
λi speciation rate of process or branch i
λi(t) time-dependent speciation rate of process i
µi extinction rate of process i
zi exponential rate of increase or decrease in λ for process i
α long-term trend in λ inheritance at speciation in ClaDS models
σ standard deviation (log scale) in λ inheritance at speciation in ClaDS models
η rate of switching of diversification process in the BAMM and LSBDS models
tMRCA age of most recent common ancestor
ψ reconstructed tree (extinct and unsampled side branches pruned away)
n number of leaves in the reconstructed tree
V the set of nodes (vertices) in the reconstructed tree
a(i) index of immediate ancestor of node i
l(i) index of left descendant of node i in oriented tree
r(i) index of right descendant of node i in oriented tree
c number of cherries (terminal bifurcations) in a tree
P(·) probability (density)
L(·) likelihood
S(t, θ) probability of process with parameters θ surviving from t until the present
Z normalization constant of Bayes’s theorem

We denote a reconstructed tree ψ = (V, t), where V is a set of nodes (vertices) and t is a corresponding vector of speciation
ages. The tree has n tips (terminal nodes or leaves) of degree one, n − 1 interior nodes of degree three, and the origin node of
degree one. We index the nodes and their ages as follows:

• the origin has index 0;

• internal nodes have indices {1, 2, . . . , n − 1}, ordered in decreasing age;

• tips have indices {n, n + 1, . . . , 2n − 1} (in any order)

The node V1 corresponds to the first split between extant (surviving) lineages; it is referred to as the most recent common ancestor
(MRCA) or the root of the reconstructed tree. The age of a node i is ti; leaves have age 0. A subtree with root at node i and origin
at time t ≥ ti is denoted ψi(t).

We will often find it convenient to distinguish between the two descendants of a node; without loss of generality, refer to
them as the left and right descendant, respectively. A tree without leaf labels where nodes have been oriented in this way is an
“oriented tree”22.

We define three mapping functions for indices in an oriented tree:

• a(i) is the index of the immediate ancestor of node i

• l(i) is the index of the left descendant of node i

• r(i) is the index of the right descendant of node i

3.2 Conversions between tree spaces
In phylogenetics, we are interested in computing the likelihood of a labelled reconstructed tree, that is, a tree with leaf labels but
with no distinction between the two descendants of a given ancestor. However, it is often convenient to derive the probability
density of oriented trees without leaf labels first, and then convert it to a density on labelled trees without orientation22. The
conversion factor is easy to find if we consider what happens if we start with a density on an oriented tree, then label it and finally
remove the orientation. There are n! unique ways of labelling an oriented tree, each with probability 1/n!. When we remove
the orientation, there are 2n−1 labelled oriented trees that produce the same labelled tree without orientation, where n − 1 is the
number of interior nodes in the tree. Thus, the conversion factor is 2n−1/n!.
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Table 3 Overview of phylogenetic diversification models considered in the paper.

Model Full name Reference

CRB Constant rate birth model Yule 24 , Nee 25

CRBD Constant rate birth-death model Feller 26
TDB Time-dependent birth model Kendall 27
TDBD Time-dependent birth-death model Kendall 27
BAMM Bayesian analysis of macro-evolutionary mixtures Rabosky 28

LSBDS Lineage-specific birth-death shift model Höhna et al. 29
ClaDS[0-2] Cladogenetic diversification rate shift models Maliet et al. 30

For completeness, we derive the conversion factor with the operations in the reverse order, first dropping the orientation
and then applying the labels. When labels are missing, there are 2n−1−c unique oriented trees for each tree without orientation,
where c is the number of “cherries”. A cherry is a pair of leaves that are each other’s closest relatives23; without labels the
descendants of a cherry are identical and there is only one unique way in which they can be oriented. Labelling a tree without
orientation is similarly affected by cherries, so that there are n! 2−c unique label assignments. The conversion factor is thus
2n−1−c/(n! 2−c) = 2n−1/n!.

In the literature on advanced diversification models, it is common practice to derive the density on unlabelled oriented trees
and ignore the conversion to a density on labelled unoriented trees; in fact, the omission of this factor is rarely acknowledged.
This contrasts with the derivation of the analytical likelihood for simple models, such as CRBD, where the conversion factor is
almost always accommodated. Previous work on diversification models has focused on a single model and a single tree; in such
cases, ignoring the conversion factor is not a problem. However, here we compare diversification models using Bayes factors, so
the normalization constant needs to be computed consistently for all models, that is, based on the same outcome space.

For convenience, our simulations of diversification processes assume unlabeled and oriented trees. This makes the scripts
simpler, and it facilitates comparison to previous descriptions of these models. Our simulations are weighted with the appropriate
conversion factor to generate the density for labelled and unoriented trees. Thus, the normalization constants (marginal likelihoods)
we compute are directly comparable to the likelihoods computed using the standard analytical equations established for the simple
diversification models, such as CRBD22, for labelled and unoriented trees.

3.3 Conditioning on the age of the MRCA
A process that starts at some time t0 in the remote past will produce a reconstructed tree that has a stalk, i.e., a branch leading
to the MRCA. However, we usually do not have any information about the length of this stalk. For this reason, and others, it is
often more convenient in practice to condition the process on the first split in the reconstructed tree, t1 22. This can easily be done
by noting that t1 can be considered the time of origin for both the left and the right subtrees originating from the first split, and
that both of these lineages survived until the present by the very definition of the concept of MRCA. Thus, the probability of the
reconstructed tree, conditioned on the age of the MRCA, is obtained by multiplying together the probabilities of the left and the
right subtrees and by conditioning on their joint survival. Given an oriented tree ψ, now without the “stalk” from the origin to
the most recent common ancestor, the likelihood is thus given by

L(ψ | θ, t1) =
P(ψl(1)(t1)|θ, t1)P(ψr(1)(t1)|θ, t1)

(S(t1, θ))2
, (1)

where θ is the vector of parameters of the model, and S(t, θ) is the probability of the process surviving (producing at least one
sampled descendant) after time t.

3.4 Diversification models
In the paper, we consider nine different diversification models (Table 3).

The CRB(D) and TDB(D) models are simple diversification models, which assume that the process is the same for the entire
tree, even though it can change over time. The other models (the advanced models) accommodate lineage-specific variation in
diversification rates. The BAMM and LSBDS assume that the diversification process changes in a major way at certain points
in time. In fact, the process is completely reset. Thus, LSBDS and BAMM can be described as models of punctuated change in
diversification. The ClaDS models instead assume gradual, heritable changes in speciation and extinction rates. Specifically, this
is modeled as small step-wise changes associated with speciation events (also called cladogenetic events).

We provide a tabular summary of the parameters of each model (Table 4) to facilitate comparison across them. We describe
each model in detail below.

3.4.1 Constant rate birth-death models (CRBD and CRB)

The constant rate birth-death (CRBD) model is the simplest model considered here. Evolutionary lineages split at a constant per-
lineage birth rate λ and go extinct at a constant per-lineage death rate µ. The parameter vector for this model is thus θ = (λ, µ, ρ).
As a special case, we consider the constant rate birth (CRB) model, also known as the Yule model, with µ = 025.
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Table 4 Summary of diversification model parameters.

Model Parameters Notes

CRB λ λ is speciation rate
CRBD λ, ε ε = µ/λ is turnover rate
TDB λ(t), z z is exponential time-dependence parameter
TDBD λ(t), ε, z
LSBDS η, {(λi, µi)} η is change rate, i is index of process
BAMM η, {(λi, µi, zi)} zi is time-dependence parameter of process i
ClaDS0 α, σ, {λi} α is trend parameter, σ is noise parameter in λ inheritance at speciation;

i is branch index in complete tree
ClaDS1 α, σ, µ, {λi} µ is extinction rate
ClaDS2 α, σ, ε, {λi} ε is turnover rate

The probability that a CRBD process starting at time t survives until the present and is sampled is known analytically22; it is

S(t, λ, µ) =
r

λ − (λ − r/ρ) e−rt
, (2)

where r = λ − µ is known as the “net diversification rate”. The likelihood of a reconstructed tree conditioned on the time of the
MRCA is also known analytically; it is given by:

L(ψ |θ, t1) =
2n−1

n!
λn−2 ρn

ĝ(t1)2
n−1∏
i=2

ĝ(ti)

ĝ(0)n S(t1)2
, (3)

where
ĝ(t) =

e−rt

(λ − (λ − r/ρ) e−rt )2
. (4)

Even though the likelihood is known analytically, there are no conjugate priors for λ and µ that would yield an analytical
posterior. Thus, we end up with an intractable integral if we want to learn these parameters from one or more observed trees.

3.4.2 Time-dependent birth-death models (TDBD and TDB)

In the time-dependent birth-death model (TDBD), the speciation rate is assumed to change continuously through time. More
specifically, we consider the following time-dependence:

λ(t) = λ0 ez(t1−t). (5)

Thus, λ0 is the speciation rate prevailing at the time of the MRCA. Furthermore, if z < 0 (resp. z > 0), the speciation rate
decreases (resp. increases) exponentially when going toward the present. An exponentially decreasing speciation rate can be seen
as an approximate model for diversity dependence. The parameter vector for this model is θ = (λ0, µ0, x, ρ).

The likelihood appears to be intractable for the presentmodel with exponentially varying speciation rate and constant extinction
rate. On the other hand, a simple solution is available for the slightly different model examined here, in which λ and µ are both
exponentially decreasing or increasing at the same rate z (and thus the turnover rate λ/µ is constant):

λ(t) = λ0 ez(t1−t),

µ(t) = µ0 ez(t1−t).

Under this model, the probability that a lineage starting at time t survives until the present and is sampled is now (for a general
method of deriving the likelihood for time-dependent birth-death models, see Morlon et al. 31 ):

S(t, λ0, µ0, z) =
r0

λ0 − (λ0 − r0/ρ) e−(r0/z)(1−e−zt )
, (6)

where r0 = λ0 − µ0. The likelihood of a reconstructed tree conditioned on the time of the MRCA has the same general form as
for the CRBD:

L(ψ |θ, t1) =
2n−1

n!
ρn

ĝ(t1)2
n−1∏
i=2

ĝ(ti) λ(ti)

ĝ(0)n S(t1)2
(7)

with S such as just given and:

ĝ(t) =
e−(r0/z)(1−e−zt )(

λ0 − (λ0 − r0/ρ) e−(r0/z)(1−e−zt )
)2 . (8)

As a special case, we consider the time-dependent birth (TDB) model, which is equivalent to TDBD except that there is no
extinction, that is, µ = 0. Note that the TDBD model collapses to CRBD when z = 0. Similarly, TDB becomes equivalent to
CRB when z = 0.
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3.4.3 Bayesian analysis of macroevolutionary mixtures (BAMM)

The BAMM model was proposed by Rabosky 28 . The original formulation of the change process is statistically incoherent32
but it is straightforward to fix this, and we follow the slight reinterpretation of the model suggested by Moore et al. 32 . In this
version, BAMM is an episodic, Poisson-modulated, birth-death process with exponentially decaying speciation rate. To describe
the process, consider a generic lineage e at time t. At this time point, the lineage is associated with rate parameters with index
e(t). Specifically, the lineage carries with it a triplet of rates (λe(t), µe(t), ze(t)). Then:

• at rate µe(t), the lineage goes extinct;

• at rate λe(t), the lineage splits into two lineages (say f and g), in which case the two daughter lineages inherit the current
rates, i.e.

(λ f (t), µ f (t), z f (t)) = (λe(t), µe(t), ze(t)),

(λg(t), µg(t), zg(t)) = (λe(t), µe(t), ze(t));

• λe(t) increases or decays exponentially at rate z;

• at rate η, the triplet of rate parameters is redrawn from a pre-specified trivariate distribution Φ, i.e.

(λe(t−), µe(t−), ze(t−)) ∼ Φ (9)

The process starts with a single lineage a at some time t0, with rate parameters (λa(t0), µa(t0), za(t0)) ∼ Φ. Specifically, we start
the process at the time immediately before the first split in the tree (at the MRCA), and we assume that the process index at this
point is a(tMRCA) = o (o for origin). The prior distributions used in this paper for Φ were chosen to harmonize with the priors
used for other models, as specified in the section on priors below. The process stops when reaching the present (t = 0) and the
surviving lineages are sampled with probability ρ.

The likelihood under the BAMMmodel as defined here does not have an analytical solution, nor does it seem to be amenable
to any known numerical techniques for solving the complex differential equations involved32. A recent paper33 analyzes a variant
of the BAMM model, which differs from the variant considered here in that the rate of diversification model shifts is considered
to be constant for a clade, regardless of the number of lineages the clade contains. This is a somewhat unusual type of model, as
lineages are usually considered to evolve independently and not as parts of a larger clade. Nevertheless, under this assumption
they succeed in deriving an analytical expression of the likelihood for the case of a single shift. They then extend this to multiple
shifts, keeping the likelihood computations manageable by assuming that a clade that has shifted diversification rates once cannot
shift again.

Describing the BAMM model as defined here (or in the clade-spanning variant) using a PPL is straightforward. Effective
inference can then be performed using generic techniques available for PPLs, such as SMC or PMCMC (particle Markov chain
Monte Carlo), as we show in the current paper. No artificial model constraints need to be introduced.

3.4.4 LSBDS

The recently proposed LSBDS model29 can be seen as a specialized version of the BAMMmodel, in which z = 0 at all times and
for all lineages. In other words, there is no exponential decay of speciation rates; the speciation rate remains constant between
rate shift events. As a result, Φ is now a bivariate distribution.

Under these conditions, it becomes possible to compute the likelihood of a reconstructed tree by approximatingΦ as a product
of two discrete distributions, with a finite (and small) number of possible values for λ and µ, and then relying on standard
numerical techniques for solving the differential equations involved34,29. This is similar to the discretization approach frequently
used in phylogenetics in order to efficiently approximate the likelihood when rates vary across sites according to a continuous
gamma distribution35.

Using this approach, the backward-in-time recursion for the extinction probability and for the conditional likelihood, which
are both conditioned on the current value of λ and µ for the lineage under consideration, entails a set of LM coupled master
equations, where L and M are the number of bins used for the λ and µ distributions, respectively. In practice, this imposes a
rather strict constraint on the number of discretization bins that can be used, as the computational complexity otherwise becomes
unmanageable. We note that the empirical examples discussed in the LSBDS paper all use a fixed value for µ across the tree,
thus effectively setting L = 1. The SMC techniques we use in the current paper do not suffer from such limitations, as they rely
on sampling values from the λ and µ distributions.

Another model that also eliminates the z variable of the BAMM model was presented recently36. This model is based on
restricting the number of possible diversification models to a finite number k of different diversification model categories. An
MCMC algorithm is then used to sample over different histories of shifts among these categories over the tree. To simplify the
computation of likelihoods, the authors further assume that no shifts among model categories occur on extinct side branches. In
our PPL and SMC context, we do not gain much by restricting the number of diversification rate models, and there is no need to
simplify the treatment of extinct side branches. Thus, we do not consider this model further here.
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3.4.5 The cladogenetic diversification rate shift models (ClaDS)

The ClaDS models30 assume that the speciation rate changes by a small random amount at each speciation event. The extinction
rate is assumed to be either equal to 0 (ClaDS0), constant but positive (ClaDS1), or proportional to the speciation rate, such that
the turnover rate (ε = µ/λ) is constant (ClaDS2). Thus, in all cases, µ = µ(λ) can be seen as a (possibly constant, for ClaDS0
and ClaDS1) deterministic function of λ.

Consider a generic lineage e at time t. This lineage carries with it a rate λe. Then:

• at rate µ(λe), the lineage goes extinct;

• at rate λe, the lineage splits into two lineages (say f and g), in which case the two daughter lineages draw their respective
speciation rates, λ f and λg as follows:

log λ f ∼ N(log(αλe), σ2).

log λg ∼ N(log(αλe), σ2).

The process starts with a single lineage o at some time t0, with speciation rate λo.
The α parameter introduces a deterministic long-term trend in the otherwise random variation of λ through time, across

the many speciation events typically occurring over the complete phylogeny. When α < 1 (resp. α > 1), the logarithm of the
speciation rate decreases (resp. increases) on average at a speciation event.

The original ClaDS paper30 focuses on the mean diversification rate multiplier m = α exp(σ2/2) rather than on α. However,
we prefer the α parameterization because it allows us to find a convenient conjugate prior that supports delayed sampling and
thus makes SMC inference more efficient (see below).

There is some superficial resemblance between logα and the z parameter in the TDBD, TDB and BAMM models, also
suggesting that this would be a natural parameterization. However, the dynamics of the ClaDS models is quite different from the
TDBD, TDB and BAMM models. This makes the interpretation of both the α and m parameters more complicated than what is
immediately obvious. When there is noise in the ClaDS models (σ > 0), there will be variation across lineages in diversification
rate. This will result in lineage selection, ensuring that the average diversification rate across lineages goes up more than suggested
by the values of m or α 37. Even within lineages, there will be slight deviations from the behavior that might be expected from
the m (or α) values. For instance, when there is noise, setting m = 1 will result in the expected diversification rate at the end of
some specified time period being lower than the starting rate. This is because the process is more likely to reach the end of the
time period without any further change if the diversification rate goes down than if it goes up.

We note that it would be straightforward to estimate posterior distributions on m using our scripts even though they use the α
parameterization. This can be achieved either by adding a line that computes m from α and σ and then returns it to the model
scripts before running the analysis, or by converting the sampled α and σ values to m values after the analysis has completed.

The likelihood under the ClaDS1 and ClaDS2 models is not analytically available, but it can be numerically evaluated30. The
evaluation method originally developed for the ClaDS models involved various numerical approximation techniques, including
discretization of time and rate space, and expands over thousands of lines of code in the RPANDA R package. Recently,
considerably more efficient inference techniques based on data augmentation have been developed for these models37.

4 Prior probability distributions
To facilitate the interpretation of the Bayes factor tests, we standardized prior probability distributions across diversification
models as much as possible in our analyses. Before going into details, it may be helpful to explicitly declare the parameterizations
we assume for the statistical distributions used. Thus, for the exponential distribution, we assume the rate parameterization, for
the inverse gamma distribution we use the shape-scale parameterization, and finally, for the normal (Gaussian) distribution, the
parameters are the mean and the variance of the distribution.

Across all models, we used an Exponential(1) prior for the speciation rate, and a Uniform(0, 1) prior for the turnover rate, both
common priors in the diversification model literature. The specific implementations are listed for each model below. For the σ
parameter of the ClaDS models, Maliet et al. 30 used a prior with most probability mass close to 0 (σ ∼ InvGamma(1, log(1.1)).
Upon examination of the empirical results published in the same paper (shown in their Figure 4a), we concluded that this choice
is overly conservative. That is, the prior puts so much probability on low values of σ that the posterior may underestimate the
extent of lineage-specific variation in diversification rates. We also note that it is more natural to consider an inverse gamma
prior for the variance rather than the standard deviation of the normal distribution, since this is a conjugate prior for the normal
distribution. Therefore, we used a σ2 ∼ InvGamma(1, 0.2) prior in our analyses.

The original ClaDS paper30 used an improper prior for the α parameter. This is not suitable for our purposes, as we need to
simulate from the prior in SMC. We instead assumed logα ∼ N(0, σ2). By making the variance of the logα prior dependent on
σ2, we establish a conjugate normal-inverse-gamma prior. This results in a joint prior on (logα, σ2) that has its mode for α at 0,
at which point there is neither acceleration nor deceleration of speciation rates. The posterior distribution of α values reported
earlier for the bird trees under the Clads2 model30 is also well covered by this joint prior. For z, we used the prior proposed in the
original BAMM paper28, namely z ∼ N(0, 0.052).

Finally, for the LSBDS and BAMM models, we wanted a prior on η that was scaled to time. In the LSBDS and BAMM
papers29,28,38, it has been common to instead specify a prior scaled to the total length of the tree. This allows one, for instance, to
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specify a prior with an expectation of one change in the diversification process over the reconstructed tree. However, if the changes
we observe in diversification rates are the result of some evolutionary process, then it would seem more reasonable to assume that
the expected number of changes is a function of evolutionary time rather than of an arbitrarily circumscribed reconstructed tree.
To obtain this effect, while still maintaining some scaling to tree size, we chose a prior with one expected change in diversification
rates over the time period from the most recent common ancestor to the present. For a small reconstructed tree, this would
correspond to an expectation of slightly more than one change over the tree, while the expectation could be more than a few
changes in a big tree. Specifically, we assumed η ∼ Exponential(tMRCA), where tMRCA is the age of the first split in the tree.

For completeness, all prior probability distributions are listed below for each of the examined models (see also Supplementary
Figure 2).

4.1 CRB
The CRB model has only one parameter, λ, for which we use the standard prior:

λ ∼ Exponential(1).

4.2 CRBD
The CRBD model has two parameters, λ and µ. For λ we use the standard prior, and for µ the indirect prior induced by assuming
a uniform prior on the turnover rate ε = µ/λ.

λ ∼ Exponential(1),
ε ∼ Uniform(0, 1).

4.3 TDB
For the TDB model, we applied the standard priors as follows:

λ0 ∼ Exponential(1),

z ∼ N(0, 0.052),

where λ0 is the initial speciation rate, and z is the time dependence parameter in λ(t) = λ0ezt . In other words, the standard λ
prior applies to the initial speciation rate in this model.

4.4 TDBD
The TDB priors are extended to the TDBD case as follows:

λ0 ∼ Exponential(1),

z ∼ N(0, 0.052),

ε ∼ Uniform(0, 1),

where λ0 is the initial speciation rate, z is the time dependence parameter in λ(t) = λ0ezt , and ε is the turnover rate. Note that in
our implementation we have kept the turnover rate constant (rather than the extinction rate), i.e., µ(t) = ελ(t).

4.5 ClaDS0
For the ClaDS0 model, we applied the standard λ prior to the initial speciation rate, in line with the TDB(D) models. The α and
σ priors are justified above. Specifically, the ClaDS0 priors we used are:

λ0 ∼ Exponential(1),

σ2 ∼ InvGamma(1, 0.2),

logα ∼ N(0, σ2),

where λ0 is the initial speciation rate, σ2 represents the variance in the inherited speciation rate and α is the speciation trend
parameter.

4.6 ClaDS1
The prior distributions related to the speciation rates are the same as for ClaDS0. In addition, we assume

ε ∼ Uniform(0, 1),

where ε is the initial turnover rate. The extinction rate, µ = ελ0, remains constant in the whole tree.
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Fig. 2 Prior distributions of model parameters. The shaded regions correspond to the region of parameter space illustrated in the posterior plots
for the empirical analyses (Supplementary Figures 13–22). See also Supplementary Figure 23.

4.7 ClaDS2
The prior distributions related to the speciation rates are the same as for ClaDS0. In addition, we assume

ε ∼ Uniform(0, 1),

where ε is the turnover rate. Unlike ClaDS1, the extinction rate changes at each speciation such that the turnover remains constant
over the whole tree.

4.8 LSBDS

For the LSBDS model, we define the joint prior Φ, such that the all λi values, including the speciation rate for the MRCA (λo),
are drawn from the standard λ prior used for other models, and such that the µi values, including the value of the MRCA, are
drawn independently from the distribution induced by drawing ε from the standard uniform distribution used for other models.
Specifically,

η ∼ Exponential(tMRCA),

λi ∼ Exponential(1),
ε i ∼ Uniform(0, 1),

where η is the rate of shifts in diversification processes, tMRCA is the time (age) of the most recent common ancestor, and λi and
ε i are the speciation and the turnover rates of the i-th diversification process.

BAMM
The prior distributions for BAMM are the same as for LSBDS, with addition of

zi ∼ N(0, 0.052),

where zi is the time dependence parameter for the speciation rate of the i-th diversification process. This is the same prior
distribution used for the z parameter of the TDB and TDBD models.

5 PPL model descriptions
In this section, we describe the PPL model scripts we used in the paper. We focus on WebPPL, as we think these model scripts
are the most accessible to biologists. We start by describing model scripts that make use of the analytical likelihood equations.
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We then present the complete description of the explicit simulation script for the CRBD model that is partly covered in the main
paper. Finally, we provide a brief overview of the simulation scripts for the remaining models. We end the section with a brief
discussion of how the Birch scripts are similar to and how they differ from the WebPPL scripts. For full details, we refer the
interested reader to the code repository accompanying the paper.

5.1 Scripts based on analytical likelihoods
As mentioned in Section 3, the likelihood of a reconstructed tree conditioned on the age of the MRCA and the parameters of
the diversification process is known analytically for the simple diversification models (CRB, CRBD, TDB, TDBD). We can
take advantage of this in probabilistic programs, facilitating efficient inference of model parameters, by scoring simulations
according to the analytical likelihood. To simplify the implementation of such scripts, we provide the analytical likelihoods as
deterministic functions in the phyjs library. Four functions are available. The function exactCRBDLikelihoodComplete
(tree, lambda, mu) computes the likelihood of a reconstructed tree under the CRBD model for specific values of λ
and µ, assuming complete sampling of the leaves (tips) in the tree, ρ = 1. The function exactCRBDLikelihoodRandom
(tree, lambda, mu, rho) computes the same likelihood when the leaves are randomly sampled with probability ρ <
1. Finally, the functions exactTDBDLikelihoodComplete (tree, lambda, mu, z) and exactTDBDLikelihoodRandom
(tree, lambda, mu, z, rho) compute the corresponding probabilities for the TDBD model. By setting mu = 0, the func-
tions can be used to compute the likelihoods for the CRB and TDB models.

The following listing shows how to infer the posterior distribution of λ and ε for the CRBD model using the analytical
likelihood and the MCMC inference method:

Algorithm 1 CRBD model with analytical likelihood.

1 var tree = phyjs.bisse_32
2

3 var model = function() {
4 var lambda = exponential({ a: 1 })
5 var epsilon = uniform({ a:0.0, b: 1.0 })
6 var mu = epsilon*lambda
7

8 factor( exactCRBDLikelihoodComplete(tree, lambda, mu) )
9

10 return [lambda, epsilon]
11 }
12

13 var dist = Infer({method: ’MCMC’, samples: 100, lag: 10, burn: 1000, model: model})
14

15 dist

In the script, we first select one of the provided trees in the phyjs package. The model is then set up by specifying the priors on
the model parameters, and computing the value of the extinction rate µ, encoded as the variable mu. The simulation then scores
the simulation according to the analytical likelihood of the sampled parameter values using the factor construct. In the final
line of the model function, the values of the model parameters are returned.

For inferring the posterior distribution induced by the model function, the MCMC method is a good choice. For explanation
of the inference settings, see the WebPPL documentation of the MCMC methodf. The last line ensures that the estimated joint
posterior distribution, encoded as dist, is printed.

The script can be run using the commands we provide in the code repository accompanying this paperg, as explained in the
documentation provided there. In the directory webppl/phywppl/examples/ in the repository, we provide analytical scripts of
this kind for the CRB, CRBD, TDB and TDBD models.

5.2 Basic script for CRBD
Here, we give a complete WebPPL implementation of the CRBD model. The program describing the model is divided into two
files to facilitate reuse of the code. The simulation part is specified in one file, and the analysis part in another. The simulation
file contains code that simulates the CRBD process along a given tree for specified values of the model parameters. This file can
be reused unaltered regardless of the particular analysis one wants to perform. The analysis file contains the specification of the
priors, the data, and the inference method. This file needs to change from one analysis to another.

The analysis file (Algorithm 2) is structured in the same way as the script using the analytical likelihood for CRBD. However,
instead of calling a function to compute the analytical likelihood, we call the simulation function for the CRBD model. This
function weights the simulation appropriately for the given parameter values, conditioned on the observed reconstructed tree.
The model function returns the model parameters, as before. However, instead of inferring the posterior distribution on those
parameters, we now use SMC and focus on the normalization constant (the marginal likelihood or model evidence). The
normalization constant estimate is available in the normalizationConstant property of the distribution object returned by the

fhttp://docs.webppl.org/en/master/inference/methods.html#mcmc
ghttps://github.com/phyppl/probabilistic-programming
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Infer function when the method is SMC. Similar example scripts are available in the webppl/phywppl/examples/ directory
for all models studied in the paper.

Algorithm 2 Analysis script for CRBD simulation.

1 var tree = phyjs.read_phyjson("bisse_32.phyjson")
2

3 var model = function() {
4 var lambda = exponential({ a: 1 })
5 var epsilon = uniform({ a:0.0, b:1.0 })
6 var mu = epsilon*lambda
7

8 simCRBDNaive( tree, lambda, mu)
9

10 return [lambda, epsilon]
11 }
12

13 var dist = Infer({method: ’SMC’, particles: 10000, model: model})
14

15 dist.normalizationConstant

Let us now turn to the simulation script (Algorithm 3). The script presented here is a naive PPL implementation of the
CRBD model in that it does not use the analytical likelihood. Instead, it explicitly simulates the speciation and extinction process
conditioned on the reconstructed tree. The script is also naive in the sense that it does not include any modifications to support
aligned SMC inference, which is important for improving inference efficiency. The advanced inference techniques we used in
the paper, including alignment, are discussed in Section 6. The script forms a basic template that can be used to express all
diversification models analyzed in our paper. It should also be straightforward to extend the script to a range of new diversification
models that have not been explored previously.

Algorithm 3 A complete WebPPL script for simulating CRBD.

1 var goesExtinct = function( startTime, lambda, mu )
2 {
3 var t = exponential( {a: lambda + mu} );
4

5 var currentTime = startTime - t;
6

7 if ( currentTime < 0 ) {
8 return false
9 }

10

11 var speciation = flip( lambda/(lambda+mu) )
12 if ( !speciation )
13 return true;
14

15 return( crbdGoesExtinct( currentTime, lambda, mu )
16 && crbdGoesExtinct( currentTime, lambda, mu ) );
17 }
18

19 var simBranch = function( startTime, stopTime, lambda, mu )
20 {
21 var t = exponential ( {a: lambda} );
22

23 var currentTime = startTime - t;
24

25 if ( currentTime <= stopTime )
26 return 0.0;
27

28 factor( Math.log( 2.0 ) );
29 condition ( crbdGoesExtinct( currentTime, lambda, mu ) )
30

31 return simBranch( currentTime, stopTime, lambda, mu )
32 }
33

34 var simTree = function( tree, parent, lambda, mu )
35 {
36 factor( - mu * ( parent.age - tree.age ) );
37

38 simBranch( parent.age, tree.age, lambda, mu );
39

40 if ( tree.type == ’node’)
41 {
42 factor( Math.log( lambda ) );
43

44 simTree( tree.left, tree, lambda, mu )
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45 simTree( tree.right, tree, lambda, mu )
46

47 }
48 }
49

50 var simCRBDNaive = function( tree, lambda, mu )
51 {
52 var numLeaves = phyjs.countLeaves( tree )
53 var corrFactor = ( numLeaves - 1 ) * Math.log( 2.0 ) - phyjs.lnFactorial( numLeaves )
54 factor( corrFactor )
55

56 simTree( tree.left, tree, lambda, mu )
57 simTree( tree.right, tree, lambda, mu )
58 }

The main function in the script is simCRBDNaive, defined at the end of the script. It takes three parameters: the model
parameters lambda and mu, and the tree on which to condition the simulation (note the actual implementation order). For
simplicity, the process is simulated along an oriented and unlabelled tree (see Section 3.2). This assumption allows us to ignore
the probability factor associated with rotation and labeling of the reconstructed tree during the main part of the simulation. To
ensure that the simulation nevertheless carries the right weight, it is first endowed with the appropriate rotation and labeling
probability (see Section 3.2) using two utility functions in the phyjs library and the factor construct in WebPPL. This is
important for computing the correct normalizing constant, but does not affect inference otherwise, since this probability factor is
the same for all simulations. Note that, for numerical stability, the particle weights in WebPPL are stored as logarithms.

Next, the function simTree is called on both children of the root node (the MRCA), initiating the recursion over the observed
tree. Note that simCRBDNaive does not return anything. It is called only for the side-effect of weighting the sampled lambda
and mu values by conditioning the simulation on the observed tree.

The function simTree is similar in structure to simCRBDNaive: it computes various weights and, if we have not reached a leaf,
continues the recursion. Here, we present a naive implementation of |simTree|, where the execution of the probabilistic program
is reweighted as soon as the information becomes available via calls to |factor|. A bit later, when we discuss advanced inference
techniques (Section 6), we will show a version of the script, which only reweights the particle after the hidden side-branches have
been processed. In the naive version, the first step is to factor the probability of no extinction on the branch from the parent to the
node (line 36). This corresponds to observing zero extinction events from a Poisson distribution parameterized by the extinction
rate |mu| and the branch length |parent.age - tree.age|, i.e. the weight can be obtained by plugging in 0 in the probability density
function (pdf) of the Poisson distribution. Next, we simulate the hidden side-branches (line 38), the function will re-weight the
computation accordingly. Finally, if we are at a node, we observe an immediate speciation event, i.e. 0 from an exponential
distribution with parameter |lambda|, which has the weight of |Math.log(lambda)|.

The simBranch function recursively simulates speciation events along the branch. If there is a speciation event, the side
branch it generates must go extinct, as it is not present in the observed reconstructed tree. We call such a speciation event a
“hidden” speciation because it is not visible in the observed tree. To condition the simulation on the extinction of the side branch
resulting from a hidden speciation, we require the call to the recursive simulation function goesExtinct to return true. The
goesExtinct function is described in the main paper; it is defined at the top of the script presented here. It simulates an outcome
of the birth-death process for given lambda and mu values, starting at a given time in the past and counting downwards until the
present (time 0). If all lineages go extinct before reaching the present, the function returns true, otherwise it returns false.
In connection with the call to goesExtinct, the simBranch function also needs to take a rotational factor into account. This
arises because there are two indistinguishable simulations that correctly account for the tree we condition on: one in which the
right descendant of the hidden speciation event goes extinct and the left descendant gives rise to the observed continuation of
the lineage, and one in which the left descendant goes extinct and the right descendant gives rise to the observed continuation
of the lineage. Thus, the correct probability score for the simulation is twice what would have resulted from a single call to
goesExtint, and we therefore need to add log 2 to the weight (recall that probability factors are represented on the log scale in
WebPPL) before continuing the recursion.

The analysis and simulation scripts described above are simplified versions of the example script crbd-naive.wppl in the
webppl/phywppl/examples/ directory, and the similarly named model script in the webppl/phywppl/models/ directory.
The simulation script presented here differs in four details from the model script in the repository. First, the script in the
repository accommodates the possibility of incomplete sampling of the leaves in the tree. Thus, there is an additional parameter
ρ in the model, encoded as the variable rho in the script. This variable appears as an argument to all simulation functions. The
goesExtinct function needs to take the sampling probability into account, and is aptly renamed to goesUndetected.

Second, the definitions of the simTree, simBranch and goesUndetected functions are hidden inside the simCRBDNaive
function. This allows us to use the same generic names for these functions in all diversification models; only the simulation
function needs to have a unique name. Hopefully, this facilitates for readers to recognize how we extended the basic template to
accommodate the other diversification models.

Third, the script in the repository employs guards against extreme values of the lambda variable, which can otherwise cause
problems with numerical exceptions or stalled simulations. We solve these problems by assigning zero weight to the simulation
if the lambda value is above or below certain threshold values. We verified that the discarded simulations have negligible impact
on the inference for all the examined models using the chosen guard values.

Finally, unlike the simple script described here, the script in the repository corrects for survivorship bias as explained in the
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next section. Before moving on to this, we want to point out that the naive CRBD simulation is suitable mainly for exploratory
analyses of small trees. For efficient inference in WebPPL on phylogenetic diversification models for larger trees, it is important
to manually modify the scripts so that they support aligned SMC inference (see Section 6.1). The CRBD model is the only model
for which we provide an unaligned (“naive”) model script.

5.3 Correcting for survivorship bias
As discussed above (Section 3.3), if we condition the simulation on the age of the MRCA, we implicitly condition on the survival
of the two subtrees originating at this point in time. To do this in a probabilistic program, we need to divide the probability of a
simulation by S(tMRCA, θ)

2, that is, the square of the probability that the process survives (and is sampled) if it starts at tMRCA,
and the model parameter values are θ. If S(t, θ) is not available in closed form, this is potentially cumbersome because it involves
a sum and integral over an infinite number of realizations of the process for each simulation. However, we can solve this by
observing that the division by S(tMRCA, θ)

2, which we cannot evaluate in general, can be rewritten as follows:

p(θ |ψ, survival) ∝
p(θ)p(ψ |θ)

S(tMRCA, θ)2
= p(θ)p(ψ |θ)

∞∑
M=1

M (1 − S(tMRCA, θ)
2)M−1 S(tMRCA, θ)

2. (10)

This shows that we can correct for the survivorship bias by using the generative model encoded in the function goesExtinct (or
goesUndetected) to simulate two evolutionary processes starting at tMRCA. We repeat this until both simulations survive to the
present time, and multiply the weight of the rest of the simulated diversification process along the observed tree by the number
of repetitions required to achieve this.

In WebPPL, we use the following recursive function to compute the number of simulations required until both trees survive:
var M_goesExtinct = function( t, lambda, mu )
{
if ( !goesExtinct( t, lambda, mu ) && !goesExtinct( t, lambda, mu ) )
return 1

else
return 1 + M_goesExtinct( t, lambda, mu )

}

The following lines are then inserted at the end of the simulation function simCRBDNaive to correctly condition on the survival
of the two subtrees defining the MRCA:
var M = M_goesExtinct( t, lambda, mu )
factor( Math.log( M ) )

The script in the repository is slightly more complex because we take incomplete sampling into account, and also implement a
guard against an excessive number of repetitions.

5.4 Scripts for other diversification models
Example analysis scripts for all models are provided in the directory webppl/phywppl/examples/, and genericmodel simulation
scripts in the directory webppl/phywppl/models/. All simulation scripts we provide in the latter directory are set up to trigger
aligned SMC inference in WebPPL. As mentioned above, the only exception is the CRBD model, where we provide both a
naive, unaligned version (phywppl/models/crbd-naive.wppl) and an aligned version (phywppl/models/crbd.wppl) for
instructional and testing purposes. We provide both scripts using analytical likelihoods and scripts using explicit simulation for
all simple diversification models (CRB, CRBD, TDB, TDBD). The scripts for the CRB, TDB and TDBD models involve simple
and straightforward modifications of the corresponding scripts for the CRBD model, described above.

The model scripts for all lineage-specific diversification models (ClaDS0, ClaDS1, ClaDS2, LSBDS, BAMM) follow the
template described above for the CRBD model, including the modifications needed to trigger aligned SMC inference. Analogous
component functions are used in the simulation scripts; they are even named the same except for the main simulation function,
which is named after the corresponding diversification model.

In probabilistic programming, you have to be explicit about the model variables that you want to estimate. These are the
variables that are returned from the model function. The focus in our study was on the normalization constant and the main
model parameters. Therefore, our model simulation scripts do not have to return anything, as all relevant parameters are defined
already in the analysis scripts in the webppl/phywppl/examples/ folder. However, readers may well be interested in sampling
the outcome of a diversification process along the tree. For instance, it may be desirable to analyze parameters such as the number
and location of change events on different lineages, or the mean speciation rate for individual branches in the tree. To facilitate
such analyses, we give an example model script for the ClaDS2 model returning the entire reconstructed tree, with descriptions
of the outcome of the simulation process for each branch and node in the tree in extended Newick format. This script is found in
the webppl/phywpppl/models/ folder.

5.5 Birch model scripts
Birch is an object oriented probabilistic programming language. It uses more concise syntax than WebPPL for the probabilistic
constructs. For example, the assume statement in the form
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x ~ Exponential(1);

is used to express that a random variable (x in the example above) is distributed according to a given probability distribution
(an exponential distribution with rate 1). Execution of such a statement depends on whether the variable has a value or not. If
it has, its behavior is equivalent with an observe statement; if not, the variable is associated with the given distribution. Birch
uses delayed sampling, so a concrete value might not be sampled until needed. Birch also supports explicit sample and observe
statements. To draw a value from an exponential distribution with rate λ, we would write
t <~ Exponential(λ);

To state that an outcome of a random variable distributed according to a Poisson distribution with rate λ is 0, we would write
0 ~> Poisson(λ);

The factor statement in WebPPL corresponds to yield FactorEvent(log_factor). To simplify the diversification model
definitions, we have defined two helper functions for commonly used yield statements.
yield duple();

corresponds to
yield FactorEvent(log(2));

and is used to account for the rotational factor at hidden speciation events. Similarly,
yield impossible();

is the same as
yield FactorEvent(-inf);

and it is used when simulated side branches resulting from hidden speciation do not go extinct, that is, when they are incompatible
with the observed tree. Note that yield impossible() statement also ceases the execution of the particle.

As we have mentioned above, Birch is an object-oriented language and the models take advantage of this. For instance, the
CRBDmodel script defines a CRBDModel class, which is derived from a base class called PhyModel. Let us examine a somewhat
simplified version of the CRBDModel class definition (Algorithm 4), to see how it compares to the WebPPL script.

Algorithm 4 CRBDModel class definition in Birch (somewhat simplified)

1 class CRBDModel < PhyModel<PhyNode, PhyParameter> {
2 λ_k:Real;
3 λ_θ:Real;
4 ε_min:Real;
5 ε_max:Real;
6 ρ:Real;
7

8 fiber initial() -> Event {
9 super.initial();

10 θ.λ ~ Gamma(λ_k, λ_θ);
11 θ.ε ~ Uniform(ε_min, ε_max);
12 }
13

14 fiber step() -> Event {
15 count:Random<Integer>; // number of (hidden) speciation events
16 count ~ Poisson(θ.λ * (node.t_beg - node.t_end));
17 for i in 1..Integer(count) {
18 t:Random<Real>;
19 t ~ Uniform(node.t_end, node.t_beg);
20 simulateUnobserved(t);
21 yield duple();
22 }
23

24 0 ~> Poisson(θ.λ * θ.ε * (node.t_beg - node.t_end));
25

26 if node.isSpeciation() {
27 0.0 ~> Exponential(θ.λ);
28 }
29 }
30

31 fiber simulateUnobserved(t_beg:Real) -> Event {
32 Δ_d:Random<Real>; // waiting time until an extinction event
33 Δ_d ~ Exponential(θ.λ * θ.ε);
34 t_d:Real <- t_beg - Δ_d;
35 if t_d < 0 {
36 // Species survived to the present time
37 yield impossible();
38 }
39
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40 count:Random<Integer>; // number of speciation events
41 count ~ Poisson(θ.λ * (t_beg - t_d));
42 for i in 1..Integer(count) {
43 t:Random<Real>;
44 t ~ Uniform(t_d, t_beg);
45 simulateUnobserved(t);
46 }
47 }
48 }

The CRBDModel class is derived from the class PhyModel, which is a templated class. The base class takes care of tasks that
are common to all diversification models, such as walking over the tree. This is analogous to the recursive calls in the simTree
function in the WebPPL script (Algorithm 3), which also walk over the branches in the tree. At the top of the class definition, the
member variables and their types are declared. These are the parameters of the prior distributions for the model variables λ and ε .
The parameters are assigned specific values when the class is instantiated in connection with running the program. The inference
settings and input values for the analyses are in the config/crbd.json file and in each of the input/<name of tree>.json
input files.

Instead of member functions, the class defines several member fibers. A fiber (also known as a coroutine) is similar to
a function, but the execution might be paused (e.g., to resample the particles) and resumed. The initial fiber initializes the
simulation by assuming lambda and epsilon to be distributed according to the appropriate priors. Note that these model
variables are packaged inside an object called θ.

The step fiber corresponds to the simBranch function in the WebPPL script. In Birch, we use a different method for
simulating the speciation and extinction events than inWebPPL. Rather than drawing the waiting times between hidden speciation
events, we use the fact that the number of hidden events is described by a Poisson distribution, and the event positions are
uniformly distributed over the branch length. This simulation method is faster than drawing each of the waiting times. In the line
0 ~> Poisson(θ.λ * θ.ε * node.branch_length);

we condition on the fact that there are 0 extinction events on the branch (recall that µ = λε). In WebPPL, we used a factor
statement with the appropriate probability instead, which is an alternative way of accomplishing the same thing. Finally, in the
line
0.0 ~> Exponential(θ.λ);

we condition on there being a speciation at the end of the branch (if it ends in an interior node). Equivalently, we could have
factored in log λ, as we did in WebPPL, with a yield statement.

The simulateUnobserved fiber corresponds to the goesExtinct function in WebPPL. However, here we first simulate the
time until the branch goes extinct. If the branch does not go extinct, we set the weight to zero, effectively killing off the simulation.
If it does go extinct, we simulate the hidden speciation events along the branch, and call simulateUnobserved recursively for
each of those events.

The code described above is subject to change, as Birch is developing rapidly. However, this section illustrates the basic Birch
features, and how they can be used to code diversification models efficiently. Hopefully, it also sheds additional light on general
PPL concepts, as it gives alternative but equivalent ways of coding some model elements compared to the WebPPL scripts we
have seen previously.

6 Inference
In this section, we provide additional details on the non-standard algorithms we used to allow efficient PPL inference on
phylogenetic diversification models.

6.1 Alignment
The encoding of the CRBD model given in Section 5.2 is rather natural—it is simply a description of the birth-death process,
with a few calls to factor to correct for some probability effects that we do not model explicitly. Unfortunately, the default SMC
algorithm implemented in WebPPL is quite inefficient for this naive implementation of the birth-death process. The algorithm
always resamples particles (simulations are called particles in the SMC algorithm) at calls to factor and condition. Since, for
every execution of the program, there is a different number of hidden speciation events on each branch in the observed tree, this
will cause the SMC particles to get out of sync at resampling points. Particles that have few hidden speciation events may reach
the end of the simulation long before particles that have many hidden speciation events. Thus, if we always resample at hidden
speciation events, we will be comparing particles that can be at very different points in the simulation.

Intuitively, one might expect that it would be better to compare the particles only when they reach the same points in the
probabilistic program. We call this alignment of the SMC resampling points. In the diversification models, we could, for instance,
make sure that the resampling occurs only at the branching points in the observed tree. To explore this idea, we “tricked” the
SMC algorithm in WebPPL to align the resampling points by introducing a few modifications to the birth-death simulation in the
simBranch and simTree functions, as illustrated in the code below (compare to the naive CRBD simulation presented above in
Algorithm 3):
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Algorithm 5 A complete WebPPL script for simulating CRBD.

1 var simBranch = function( startTime, stopTime, lambda, mu )
2 {
3 var t = exponential ( {a: lambda} );
4

5 var currentTime = startTime - t;
6

7 if ( currentTime <= stopTime )
8 return 0.0;
9

10 var sideDetection = crbdGoesUndetected( currentTime, lambda, mu )
11 if ( sideDetection == false )
12 return ( -Infinity )
13

14 return simBranch( currentTime, stopTime, lambda, mu )
15 + Math.log( 2.0 );
16 }
17

18 var simTree = function( tree, parent, lambda, mu )
19 {
20 var lnProb1 = - mu * ( parent.age - tree.age );
21

22 var lnProb2 = ( tree.type == ’node’ ? Math.log( lambda ) : 0 );
23

24 var lnProb3 = simBranch( parent.age, tree.age, lambda, mu );
25

26 factor( lnProb1 + lnProb2 + lnProb3 )
27

28 if ( tree.type == ’node’)
29 {
30 simTree( tree.left, tree, lambda, mu )
31 simTree( tree.right, tree, lambda, mu )
32 }
33 }

Specifically, we need the WebPPL SMC implementation to skip the resampling induced at the calls to factor and condition
within simBranch in the naive model script. We achieve this by replacing the factor and condition statements in the
simBranch function by code that accumulates the weight and returns it to simTree. The accumulated weight is then passed
as an argument to factor in simTree, after the entire branch has been processed, triggering resampling at this point. The
factor statement is also passed the probability of no extinction on the branch (lnProb1), and the likelihood of a speciation at
the end of the branch, if it is an interior branch in the observed tree (lnProb2). Note that, to improve efficiency, we immediately
return -Infinity in simBranch if a call to goesExtinct returns false, since there is no need to continue the recursion if this
occurs. By modifying the simulation script in this way, the SMC particles stay in sync. There are no triggers of resampling in the
simBranch recursion, so resampling is always performed in simTree, in between processing branches of the observed tree.

Simulations on a few example trees of varying sizes confirm that this indeed improves SMC efficiency on diversification
models considerably (Supplementary Figure 3). The larger the tree, the more important it is for SMC performance to align the
resampling points in this way. Ideally, one should not have to manipulate model scripts in the way described above; alignment
should be applied automatically when it improves SMC efficiency. This is an idea that we are exploring within the TreePPL
project. The goal is to analyze the potential performance gains induced by resampling, and then apply it intelligently either in
the compiler and/or the language runtime. We separately present a static analysis for automatic alignment of programs39. Note
that alignment is not guaranteed to improve accuracy—in certain cases, it might actually degrade performance. However, for all
models considered here, alignment is beneficial.

6.2 Delayed sampling
Probabilistic computations involve not only simulation and observation, as represented by the sample and observe statements
in a PPL, but also such computations as marginalization, enumeration, and conjugate updating.

Consider the following joint distribution between two variables x and λ:

p(x, λ) = p(x | λ)p(λ), (11)

where the two factors on the right are encoded in the probabilistic program as, for example:

λ ∼ Gamma(1, 1),
x ∼ Poisson(λ).

We may wish to compute the marginal distribution of x:

p(x) =
∫

p(x | λ)p(λ) dλ, (12)
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Fig. 3 A comparison of the precision in the estimated normalization constant between naive and aligned CRBD. Left: 32-taxon tree (Bisse_32).
Center: 87-taxon tree (Cetaceans_87). Right: 233-taxon tree (Primates_233). SMC inference with 10,000 particles in WebPPL. Dotted line:
exact analytical solution. Parameters: λ = 0.2, ε = 0.5, complete sampling of leaves assumed (ρ = 1).

or, given a value of x, compute the posterior distribution over λ:

p(λ | x) =
p(x | λ)p(λ)

p(x)
. (13)

Evaluations such as these can be performed analytically for random variables with a conjugate relationship (such as the gamma-
Poisson relationship in the example above), or for discrete random variables where all possible outcomes can be enumerated.
This can improve the performance of inference by, for example, reducing the variance in statistical estimators, such as that for the
marginal likelihood.

Delayed sampling6 is a particular heuristic that may be employed by a PPL to identify and leverage such situations to
improve inference outcomes. It does so in a manner that produces correct results, even for programs with stochastic branches and
unbounded recursion as may be encountered in Turing-complete programming languages. It is not necessary for the programmer
to painstakingly code such computations by hand.

We have used delayed sampling extensively in this work, substantially reducing the variance in marginal likelihood estimates.
In particular, for Poisson processes on trees, gamma prior distributions over rates are conjugate either to the Poisson-distributed
number of events in a given time interval, or the exponentially-distributed time between events. These rate parameters are then
automatically marginalized out by delayed sampling, substantially reducing variance in the marginal likelihood estimate for these
models. The same approach to handling parameters is used in Kudlicka et al. 40 and Wigren et al. 41 . Delayed sampling is only
available in Birch at this point.

6.3 Alive particle filter
The resampling step in SMC amounts to drawing N samples (with replacement) from the current set of N particles with
probabilities proportional to their weights. While simulating the evolution of unobserved side branches, if any species survives
to the present day (and is sampled), the weight of the particle must be set to 0. This leads to sample impoverishment—there are
fewer particles to choose from during resampling. In extreme cases, where all particles have zero weight, there are no particles
to choose from at all, and the algorithm fails. This can be a serious problem for SMC inference on diversification models when
the likelihood of extinction of side branches is low. For instance, this can occur if the net diversification rate (λ − µ) is high.

The extended alive particle filter40—the development of which from the initial version of this algorithm42 was inspired by
phylogenetic diversification models—solves these two problems by replacing the particles with zero weights with new samples
drawn from the particle set at the previous time step (again with probabilities proportional to the particle weights at that time)
and repeating the propagation step (the simulation from the previous resampling point until the current resampling point). This
replacing procedure is repeated until the weights of all particles are positive. Note that in order to estimate the marginal likelihood
without bias, one needs to repeat this procedure for one additional particle. However, with a reasonable number of particles, this
extra computational cost is negligible, and we therefore applied the alive particle filter to all analyses. The alive particle filter is
only available in Birch at this point.

6.4 Tree orientation
During the course of the study, we discovered that the orientation of the nodes in the observed tree can have a noticeable influence
on the efficiency of SMC inference for some trees. The effect appears to be associated with highly imbalanced trees, which may
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be oriented such that left and right subtrees systematically have different properties. A depth-first SMC algorithm can apparently
become misled by the imbalance between left and right descendants in such trees, so that early resampling events can select
particles that do not do well towards the end of the simulation, decreasing the quality of the final estimate. We found that orienting
all nodes such that the descendant branch with the shortest subtree length was always processed first solved this problem. Thus,
all trees were reoriented in this way before final analyses in Birch.

7 Verification
We performed a wide range of experiments to verify that the model scripts are correct. For all tests involving WebPPL or
third-party software, the full set of experiments—including the source code, data, graphs and reports—can be found in the
directory verification of the phywppl package. The verification experiments involving Birch were performed by changing
the input files and/or models to fix the values of selected parameters. The results from these experiments are included in the
above-mentioned directory, together with the results from the experiments involving WebPPL.

Here, we only present a summary of the experiments. They all use the 32-taxon example tree, which we provide as one of
the builtin trees in the phyjs package. The tree has been previously used as an example in diversification model papers; it is
originally from the Mesquite software19 but does not appear to have been published separately. Only scrips adapted for aligned
SMC inference were used in the verification experiments.

The experiments are based on several lines of attack. In the first round of tests, we used the fact that there are analytical
solutions for the likelihood of the simple diversification models (CRB, CRBD, TDB and TDBD) under specific parameter values.
Thus, we could verify that the normalization constant computed by SMC from our explicit simulation scripts for the same models
(the scripts that simulate the process along the tree instead of calling the likelihood function) matched the corresponding analytical
likelihoods for a wide range of specific parameter values. These tests are important because the explicit simulation scripts for the
simple models served as templates for the scripts describing the more complex models.

The second round of tests were based on the observation that the more complex diversification models (ClaDS0, ClaDS1,
ClaDS2, LSBDS and BAMM) all collapse to simpler models with analytically known likelihoods under specific parameter
settings. This allows us to verify that the normalization constant computed from the scripts for the complex models matched the
corresponding analytical likelihoods for select points in parameter space.

For other points in parameter space, we cannot verify the scripts for the more complex models against analytical likelihoods,
but we can use other approaches to test their correctness. For instance, the WebPPL and Birch scripts for the complex models
were implemented independently by different co-authors of this paper, and the inference algorithms in WebPPL and Birch were
also different and based on independent implementations. In the third round of tests, we verified that the WebPPL and Birch
scripts for the complex models gave the same normalization constant for a grid of parameter values despite these differences.

The fourth round of tests took advantage of the independent implementations available in third-party software for the ClaDS
models43 and for LSBDS29. We verified that our scripts for these models resulted in the same estimates of the likelihood as
these implementations for a select set of parameter values, despite being based on entirely different code bases and computational
strategies.

Third-party software also exists for BAMM38 but it does not compute correct likelihoods for the model32, so it cannot be
used to verify our scripts. However, the BAMM model collapses to the LSBDS model when all zi = 0. We therefore verified
that our BAMM model script results in the same likelihood estimates as the LSBDS model script under select parameter values
matching this constraint but lacking analytical solution.

7.1 Simple models against analytical likelihoods
All simulation scripts for simple models (CRB, CRBD, TDB and TDBD) generated normalization constant estimates that matched
the corresponding analytical likelihoods very closely. We observed some variance in the estimates for high λ values, but these
parameter values have low likelihood and are thus less important for inference (Supplementary Figure 4). All λ × ε combinations
for two values of ρ: ρ = 0.5 (incomplete sampling in the order of magnitude of the ρ-range for the bird trees) and ρ = 1 (complete
sampling) have been checked.

7.2 Complex models against analytical likelihoods
All model scripts for advanced diversification models (ClaDS0, ClaDS1, ClaDS2, LSBDS and BAMM) generated normalization
constant estimates that matched analytical likelihoods under parameter settings for which closed solutions exist (Supplementary
Figure 5, 6). Again, we checked all λ × ε combinations for two values of ρ: ρ = 0.5 (incomplete sampling in the order of
magnitude of the ρ-range for the bird trees) and ρ = 1 (complete sampling).

7.3 Birch and WebPPL cross-verification
Under parameter and prior settings for which closed solutions do not exist, the independently developed Birch and WebPPL
scripts for advanced diversification models resulted in matching normalization constant estimates. Birch estimates were slightly
more precise thanWebPPL estimates (Supplementary Figure 7) but this is expected given the more powerful inference algorithms
used by Birch. In the tests illustrated in the figure, ρ = 1 is assumed. To verify that our code is correct also for ρ < 1, we ran
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Fig. 4 Verification of explicit simulation scripts (WebPPL) for simple diversification models: normalization constants match analytical likelihoods
for select parameter values. Error bounds: ±2 standard deviations. Experiment codes in the GitHub repository indicated under the main title.
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Fig. 5 Verification of WebPPL simulation scripts for the ClaDS[0-2] models: normalization constants match analytical likelihoods for select pa-
rameter values. Error bounds: ±2 standard deviations. Experiment codes in the GitHub repository indicated under the main title.
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Fig. 6 Verification of WebPPL simulation scripts for lineage-specific diversification models (complex models): normalization constants match
analytical likelihoods for select parameter values. Error bounds: ±2 standard deviations. Experiment codes in the GitHub repository indicated
under the main title.
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Table 5 Cross-verification of WebPPL and Birch for ρ < 1.

WebPPL Birch
Model ρ mean log Z std. dev. log Z mean log Z std. dev. log Z

BAMM 0.1 -146.839 0.623 -146.608 0.279
BAMM 0.5 -139.612 0.198 -139.544 0.089
ClaDS0 0.1 -152.348 0.921 -150.540 0.663
ClaDS0 0.5 -142.506 0.450 -142.528 0.173
ClaDS1 0.1 -153.957 2.003 -151.245 0.635
ClaDS1 0.5 -143.422 0.351 -143.385 0.164
ClaDS2 0.1 -152.426 1.578 -151.747 0.915
ClaDS2 0.5 -143.085 0.315 -143.000 0.161
CRBD 0.1 -172.826 0.093 -172.795 0.089
CRBD 0.5 -143.259 0.083 -143.314 0.077
LSBDS 0.1 -172.794 0.120 -172.819 0.095
LSBDS 0.5 -143.361 0.075 -143.321 0.032
TDBD 0.1 -145.567 0.989 -145.042 0.063
TDBD 0.5 -139.039 0.263 -139.028 0.000

several additional grid point experiments as summarized in Table 5. All experiments in the table were conducted on the 32-taxon
tree using the standard priors, except for λ = 0.2, ε = 0.5, and ρ, for which point values were used instead. For TDBD, the Birch
implementation uses the analytical solution.

7.4 Verification of ClaDS models against RPANDA
Verification of the probabilistic programs and PPL inference algorithms described in this paper against the reference RPANDA
implementation of the ClaDS models is quite involved, and would not have been possible without extensive help from the author
of the ClaDS code in RPANDA (Odile Maliet), as computation of the likelihoods with RPANDA is not part of its public API.
RPANDA computes the likelihood for points in parameter space where all the initial λi values for the branches in the reconstructed
tree are known, as well as the λo value, pertaining to the MRCA of the tree. The likelihood in RPANDA is also conditioned on
specific values of the model parameters α and σ, as well as on µ (for ClaDS1) or ε (for ClaDS2). The ClaDS0 likelihood function
in RPANDA is based on analytical equations, while the ClaDS1 and ClaDS2 functions are based on numerical approximations
using a variety of techniques. In addition, the functions only give the density up to a proportionality constant, further complicating
direct comparisons with our scripts.

The RPANDA setup means that the PPL scripts have to condition on specific values for all of the model parameters, including
the initial λ values for all branches, to emulate the RPANDA likelihood computations. To be able to conduct the verification
experiments, we decided to use a fixed value λ f for λo and all λi parameters of the model in our WebPPL scripts; we did not
attempt to perform these verification experiments in Birch. We then chose a range of λ f values, and explored these points in
parameter space under some specific values of α, σ and µ (for ClaDS1) and ε (for ClaDS2). Likelihoods for the same points in
parameter space were then computed in RPANDA with the analytical likelihood function (for ClaDS0) and the numerical solvers
(for ClaDS1 and ClaDS2). In the git repository accompanying the paper, we provide both the WebPPL scripts emulating the
RPANDA computations and the R scripts we used to compute likelihoods for the corresponding points in parameter space with
RPANDA.

For ClaDS0, the initial experiments showed that the likelihood function in RPANDA computes densities that very closely
match the densities expected for oriented and unlabeled trees. Thus, we concluded that the proportionality constant for the ClaDS0
likelihood function in RPANDA is the same as the conversion factor from densities on oriented and unlabeled trees to densities
on labeled, unoriented trees. This factor is Lp = log(2(n−1)/n!), where n is the number of leaves in the tree (see Section 3.2).

When controlling for this, the likelihoods estimated by WebPPL for ClaDS0 are consistent with those computed by RPANDA
(Supplementary Figure 8). For points in parameter space where ClaDS1 and ClaDS2 collapse to ClaDS0, that is, for points where
µ = ε = 0, likelihoods estimated by WebPPL and RPANDA are also very similar. The same is true for small values of λ and µ)
in ClaDS1, and for small values of λ and ε in ClaDS2. For larger values, RPANDA apparently overestimates the likelihood for
both models, and there are also some apparent discretization effects at very high values of λ. We tried to examine the effects of
these inaccuracies in RPANDA on the posterior estimates of the ClaDS1 and ClaDS2 model parameters for the test tree, but were
unable to get sufficiently good MCMC convergence in RPANDA to allow meaningful analysis of these results.

7.5 Verification of LSBDS against RevBayes
In the current implementation of LSBDS in RevBayes (the SCM algorithm), the likelihoods are computed by discretizing the λ
and µ priors. Transitions happen by “jumping” from one pair of discrete values of λ and µ to a different pair. We discovered that
λ and µ are coupled when these jumps are made: i.e., the discrete vectors representing the prior distributions fλ and fµ have to be
of the same length and, when a jump happens, a single new array index is chosen for both the λ and the µ vector. Thus, usually,
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Fig. 7 Verification that the WebPPL and Birch scripts for lineage-specific diversification models generate normalization constants that match each
other for select parameter values.
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Fig. 8 Verification of the likelihoods computed by WebPPL in programs emulating RPANDA against likelihoods computed by RPANDA for the
ClaDS models.

126 PAPERS



2 4 6 8 10

-1
55

-1
50

-1
45

-1
40

WebPPL LSBDS vs RevBayes LSBDS

Expected number of rate changes

lo
g

 Z^

C4

-
-

WebPPL
RevBayes

2 4 6 8 10

-1
55

-1
50

-1
45

-1
40

Birch LSBDS vs RevBayes LSBDS

Expected number of rate changes
lo

g
 Z^

C3

-
-

Birch
RevBayes

Fig. 9 Verification that the WebPPL and Birch scripts for the LSBDS model generate normalization constant estimates that match the numerically
estimated likelihood computed by RevBayes.

the RevBayes LSBDS examplesh fix λ but discretize µ (or vice-versa). However, it is possible to discretize both λ and µ and then
expand the two arrays so that all possible combinations of λ and µ values appear when sweeping both vectors simultaneously
with a single array index. This has to be done manually.

We verified our LSBDS scripts against RevBayes for specific values of η and integrated out λ ∼ Exponential(1) and µ = ελ,
where ε ∼ Uniform(0, 1) using k = 10 rate categories for both λ and µ. We implemented the appropriate vector of parameter
values manually, as described above. The RevBayes scripts used in the verification experiments are provided in the git repository
accompanying the paper.

Under these settings, both the WebPPL and Birch scripts for the LSBDS model generate normalization constant estimates that
match the likelihoods computed by RevBayes (Supplementary Figure 9). As observed previously in several experiments, Birch
provides slightly more precise estimates of the normalization constant than WebPPL.

7.6 Verification of BAMM against LSBDS
There is no third-party software implementing BAMM that we can verify the WebPPL and Birch scripts against. However, we
can use the fact that BAMM collapses to LSBDS when all zi values approach 0. Under these conditions, and when integrating
out the other model parameters, both the WebPPL and Birch simulations scripts for BAMM produce the same normalization
constants as the corresponding LSBDS scripts (Supplementary Figure 10),

8 Empirical data
For the empirical analyses illustrating PPL inference for phylogenetic diversification models, we used the bird trees analyzed
previously for the ClaDS2 model by Maliet et al. 30 . The trees originate from an earlier study inferring a global timed phylogeny
of birds44. Specifically, clades with 50 or more leaves (excluding outgroups) from the earlier study were selected in the ClaDS2
study30 and post-processed to remove outgroups and to rescale branch lengths to time units (myr). Also, only species for
which there is molecular data have been included in the trees analyzed by Maliet et al. 30 ; consequently the authors calculated a
sampling fraction (ρ) by dividing the number of tips in the trees computed for species with genetic data by number of tips in the
corresponding complete tree (private correspondence).

We downloaded these post-processed trees from the repositoryi accompanying the ClaDS2 paper and extracted the corre-
sponding sampling fractions ρ.

The trees were converted from binary R data (RData) to text format (Nexus) with the ape package. The Nexus files were then
converted to PhyJSON with the nexus2phyjson tool that we provide18. Next, the PhyJSON trees were reoriented to avoid any
systematic left-right imbalances in the original trees that could have a negative effect on inference (see Section 6.4). The resulting
PhyJSON trees were then used as input data for the WebPPL and Birch analyses.

hhttps://github.com/hoehna/birth-death-shift-analyses
ihttps://github.com/OdileMaliet/ClaDS/tree/master/birds_MCC_results
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Fig. 10 Verification that the WebPPL and Birch scripts for the BAMM model generate normalization constant estimates that match those of the
corresponding scripts for the LSBDS model for some points in parameter space where the BAMM model collapses to LSBDS.

There are 42 bird clades in the Jetz et al. 44 study with more than 50 species excluding outgroups. However, we discovered that
two of the trees, P2 and Scolopaci, have negative branch lengths. Rather than introducing arbitrary corrections for the negative
branch lengths, we excluded these trees from further analysis. The remaining 40 bird trees are summarized in Table 6. The
original names of the bird clades44 are rather cryptic. Here, we named the clades after the family (or other higher taxon) to which
most members belong according to the taxonomic classification used in the original bird study44. If a family is split between
two clades, the clades are numbered 1 and 2. A ’-’ sign after the family name indicates that some members of the family are
not included in the clade; a ’+’ sign indicates that the clade includes some members of other families. Four of the trees in the
repository accompanying the ClaDS paper30 are mislabeled there: Caprimulgidae is incorrectly labeled CC7, CC4 is labeled
Cathartidae, CC7 is labeled CC5CC6B, and CC8 is labeled CC5CC6C.

The size of the trees vary from 54 (Alcedinidae) to 316 leaves (Tyrannidae+), and the ages from 12.5 Ma (Thraupidae1+) to
66.6 Ma (Cuculidae). The fraction of species included in the trees, that is, the sampling fraction ρ, varies from 0.43 (Columbidae)
to 0.91 (Hirundinidae). The tree shapes are depicted in Supplementary Figures 11, 12.

9 Efficiency of inference algorithms
In this section, we provide detailed information about the efficiency of the inference algorithms, taking into account both the quality
of the samples of the posterior distribution, and the computational resources needed in obtaining those samples. Specifically,
we take advantage of the most obvious approach to measuring the quality of a Monte Carlo inference procedure: we repeat the
analysis many times (by running the corresponding program multiple times), and then assess the consistency of the estimates.

We focus on the normalization constant estimates across independent Monte Carlo analyses, as the normalization constant is
influenced by all components in the model, including priors, latent variables and data. Thus, the consistency of the normalization
constant estimates should provide a good overall estimate of the efficiency of the inference procedure.

Clearly, the more computational resources we invest in obtaining an estimate of the normalization constant, the better that
estimate will be. When is the estimate good enough? This depends on how the estimate is to be used. Consider, for example,
if the estimate is to be used within a pseudomarginal Metropolis-Hastings sampler. In this case, there is a trade-off between the
quality of the normalization constant estimate and the overall efficiency of the MCMC procedure. The efficiency of the MCMC
procedure (per time unit) will increase with the precision of the normalization constant estimate, but will decrease with the time
required to obtain it. Given some reasonable assumptions, it turns out that the optimal choice is to target a standard deviation of
1.0 if the Metropolis-Hastings algorithm using the exact likelihood is efficient, and around 1.7 when it is not45. This suggests
that a normalization constant estimate with a standard deviation close to 1.0 is more than satisfactory for this kind of demanding
application.

With this in mind, we use two additional diagnostics to assess the efficiency of our inference procedure: the relative effective
sample size (RESS) and the conditional acceptance rate (CAR). The former assesses the effect of using the normalizing constant
estimates as the weights for an importance sampler, the latter of using them as unbiased estimates of the marginal likelihood for
a pseudomarginal sampler.
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Table 6 Overview of the bird trees used for diversification analyses.

Tree Clade (Jetz et al.) Leaves ρ Age (Ma) Notes

Accipitridae Accipitridae 175 0.71 59.6 Hawks, eagles, kites and allies
Alcedinidae Alcedinidae 54 0.57 34.9 Kingfishers
Anatinae Anatinae 108 0.87 20.3 Dabbling ducks
Caprimulgidae Caprimulgidae 57 0.61 57.3 Nightjars
Campephagidae- CC4 70 0.85 30.1 Cuckooshrikes and allies
Charadrii Charadrii 63 0.62 59.6 Waders
Columbidae Columbidae 133 0.43 35.9 Pigeons and doves
Corvidae+ CC8 234 0.66 30.0 Crows, magpies, monarchs and allies
Cuculidae Cuculidae 126 0.88 66.6 Cuckoos
Emberizidae- P20b 125 0.77 14.8 Buntings
Estrildidae P7 101 0.62 19.5 Estrildid finches
Fringillidae+ P10 123 0.63 25.4 True finches
Furnaridae Furnaridae 205 0.67 19.9 Ovenbirds
Hirundinidae S6 77 0.91 23.1 Swallows, martins and allies
Icteridae P21 92 0.88 14.0 New World blackbirds, orioles and allies
Lari Lari 127 0.84 24.6 Gulls
Malaconotidae+ CC7 80 0.55 31.4 Bushshrikes
Meliphagidae-+ BC7 90 0.49 37.1 Honeyeaters
Muscicapidae-+ M6 231 0.77 20.2 Old World flycatchers
Paridae+ S2 55 0.72 40.9 Tits
Parulidae+ P20a 111 0.89 17.2 New World warblers
Phasianidae Phasianidae 131 0.73 27.2 Pheasants, partridges and allies
Picidae Picidae 137 0.61 27.1 Woodpeckers
Procellariidae Procellariidae 105 0.81 59.6 Shearwaters, fulmarine petrels and allies
Psittacidae1 Psittacidae1 111 0.65 33.2 True parrots (part)
Psittacidae2 Psittacidae2 118 0.72 34.9 True parrots (part)
Pycnonotidae-+ S9 95 0.73 29.4 Bulbuls
Ramphastidae Ramphastidae 81 0.65 32.2 Toucans
Strigidae Strigidae 101 0.52 45.7 True owls
Sturnidae+ M4 130 0.87 24.9 Starlings, mockingbirds and allies
Syvliidae1+ S11 79 0.65 28.1 Warblers, parrotbills and allies (part)
Sylviidae2+ S7S8 93 0.79 24.3 Warblers, parrotbills and allies (part)
Thamnophilidae Thamnophilidae 165 0.74 22.4 Antbirds
Thraupidae1+ P13P14P16 158 0.71 12.5 Tanagers (part)
Thraupidae2+ P17P18 139 0.89 13.7 Tanagers (part)
Timaliidae-+ S13 180 0.49 21.0 Old World babblers
Trochilidae Trochilidae 233 0.69 28.1 Hummingbirds
Troglodytidae+ M1 91 0.69 32.7 Wrens
Turdidae-+ M5 134 0.86 21.7 Thrushes
Tyrannidae+ Tittyranrest 316 0.69 33.6 Tyrant flycatchers
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A Accipitridae B Alcedinidae C Anatinae D Caprimulgidae

E Campephagidae- F Charadrii G Columbidae H Corvidae+

I Cuculidae J Emberizidae- K Estrildidae L Fringillidae+

M Furnaridae N Hirundinidae O Icteridae P Lari

Q Malaconotidae+ R Meliphagidae-+ S Muscicapidae-+ T Paridae+

Fig. 11 Shape of the bird trees, part 1
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A Parulidae+ B Phasianidae C Picidae D Procellariidae

E Psittacidae1 F Psittacidae2 G Pycnonotidae-+ H Ramphastidae

I Strigidae J Sturnidae+ K Syvliidae1+ L Sylviidae2+

M Thamnophilidae N Thraupidae1+ O Thraupidae2+ P Timaliidae-+

Q Trochilidae R Troglodytidae+ S Turdidae-+ T Tyrannidae+

Fig. 12 Shape of the bird trees, part 2
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Specifically, if we have N particles with normalized weights {w1,w2, . . . ,wN }, the effective sample size Neff is computed as

Neff =
(
∑

i wi)
2∑

i w
2
i

. (14)

This is known as Kish’s ESS46. We then compute the relative ESS (RESS) simply by dividing the ESS with the number of
independent Monte Carlo estimates we had of the normalization constant. The RESS, which is a value on the interval (0, 1],
measures the efficiency of the Monte Carlo estimation procedure40.

Like RESS, CAR is a value on the interval (0, 1]47. It measures the expected drop in acceptance rate of a Metropolis-Hastings
proposal due to errors in the estimate of the normalization constant, that is, similar to the logic we described above in establishing
a quality criterion for the standard deviation. This theoretical acceptance rate is measured for each sampled point, as though the
proposal distribution were shrunk to a Dirac δ distribution. The CAR is related to the standard deviation of the normalization
constant estimate, but, like RESS, is a more direct measure of the impacts of that estimate on an inference procedure.

In the initial analyses, we used 10,000 particles in the importance sampling procedure (for the CRB(D) and TDB(D) models)
and 5,000 particles in the SMC procedure with the alive particle filter (for the remaining models). The standard deviation of the
normalization constant was well below 1.0 in all sequential importance sampling runs (Table 7). In the SMC runs, the standard
deviation was usually close to or below 1.0 for all models except BAMM. However, we noted standard deviations above 2.0 in
2 of 40 trees for ClaDS1 (Muscicapidae-+ and Thamnophilidae) and in 5 of 40 trees for LSBDS (Accipitridae, Muscicapidae-+,
Timaliidae-+, Tyrannidae+ and Trochilidae). For BAMM, we increased the number of particles to 20,000, which brought the
standard deviations down to more acceptable levels, even if we still noted values above 2.0 for 17 of 40 trees.

The RESS and CAR values largely reflect the standard deviation of the normalization constant estimates. However, we
observed some SMC cases where the RESS and CAR values suggest that the sample is reasonably good, even though the standard
deviation is high. Notable examples include the BAMM results for Corvidae+, Columbidae and Cuculidae, and the LSBDS
results for Muscicapidae-+ and Trochilidae.

All analyses of empirical data were run on Tetralith, the largest high-performance computing cluster at the National Super-
computer Centre (NSC), Sweden, a part of the Swedish National Infrastructure for Computing (SNIC). The cluster comprises
1908 nodes, each with two Intel Xeon Gold 6130 CPUs (each with 16 cores). There are 1832 nodes with 96 GiB and 60 nodes
with 384 GiB of RAM.j The operating system on the nodes is Linux (version 3.10.0) and the cluster uses SLURM (18.08.8) to
schedule jobs. For each tree and model, we submitted an array of 10 single-core jobs with the memory limit set to 8 GiB (to avoid
running out of memory for the largest trees), each running the respective Birch program 50 times. We used the latest development
version of Birchk and its standard library (as of June 12, 2020).

The median time (among 500 replicates) required to complete an importance sampling analysis (10,000 particles) using this
hardware and analysis setup ranged from a few seconds to around one minute (Table 8). The SMC analyses (5,000 or 20,000
particles) were more demanding, requiring from around a minute to more than 50 minutes in extreme cases. The longest run
times were usually associated with the BAMM model, for which we used four times as many particles (20,000) as for the other
models. For models other than BAMM, the median run times rarely exceeded ten minutes. As one might expect, the largest trees
were generally associated with the longest run times.

10 Extended results
The main purpose of the empirical analyses is to demonstrate the power of probabilistic programming in addressing inference
problems in phylogenetics, not to advance the field of diversification studies. Nevertheless, there are several interesting patterns
in the results that deserve attention and that may inspire further study. In this section, we present model likelihoods and posterior
estimates of model parameters for all bird clades and diversification models (Supplementary Figures 13–22). The plots of
posterior distributions should be interpreted in relation to the prior distributions for the corresponding regions of parameter space
(Supplementary Figures 23). We structure the discussion of the results around several cross-cutting themes.

10.1 Conservative nature of Bayesian model tests
One of the most striking patterns across the bird trees, especially given the recent debate about the importance of accommodating
lineage-specific diversification rates, is that simple birth-death models do so well in a Bayesian model comparison. In at least 16 of
the 40 bird trees, there is no strong evidence against the simple CRB and CRBDmodels. In fact, in most of these cases, the simple
models (either CRB(D) or TDB(D)) have the best normalizing constants. There are also some cases where the TDB(D) models
do clearly better than the other models, significantly so in a couple of cases (Emberizidae- and Muscicapidae-+, Supplementary
Figures 15 and 17, respectively).

There is a clear correlation between the size of the tree and the outcome of the model comparison. Of the trees with less
than 100 leaves, the CRB(D) models adequately describe the diversification process in a majority of cases, as indicated by
Bayes factors. The largest trees lacking strong evidence of lineage-specific or slowing diversification have around 130 leaves
(Columbidae, Cuculidae, Phasianidae and Sturnidae+; Supplementary Figures 14, 15, 18 and 20, respectively). Above that size,

jhttps://www.nsc.liu.se/systems/tetralith/
khttps://github.com/lawmurray/Birch
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Table 7 Diagnostics for the normalization constant estimates obtained across 500 runs for each tree and model. The first line in each cell shows
the mean and standard deviation of the normalization constant estimates. We also give the relative effective sample size (RESS, the second line)
and conditional acceptance ratio (CAR, the third line).

Tree CRB CRBD TDB TDBD ClaDS0 ClaDS1 ClaDS2 LSBDS BAMM

Accipitridae
−1219.1 ± 0.1 −1218.9 ± 0.1 −1220.6 ± 0.2 −1220.1 ± 0.1 −1196.7 ± 0.7 −1196.9 ± 1.1 −1196.7 ± 1.0 −1214.1 ± 3.6 −1212.3 ± 3.0

RESS: 0.995 RESS: 0.994 RESS: 0.970 RESS: 0.987 RESS: 0.656 RESS: 0.042 RESS: 0.442 RESS: 0.034 RESS: 0.055
CAR: 0.962 CAR: 0.956 CAR: 0.901 CAR: 0.935 CAR: 0.630 CAR: 0.331 CAR: 0.500 CAR: 0.092 CAR: 0.119

Alcedinidae
−304.4 ± 0.0 −305.5 ± 0.1 −305.6 ± 0.1 −306.0 ± 0.1 −306.9 ± 0.2 −308.9 ± 0.7 −307.7 ± 0.6 −307.5 ± 0.4 −308.6 ± 0.6

RESS: 0.998 RESS: 0.997 RESS: 0.995 RESS: 0.996 RESS: 0.940 RESS: 0.112 RESS: 0.521 RESS: 0.857 RESS: 0.831
CAR: 0.974 CAR: 0.967 CAR: 0.960 CAR: 0.965 CAR: 0.861 CAR: 0.564 CAR: 0.666 CAR: 0.781 CAR: 0.784

Anatinae
−587.8 ± 0.0 −586.2 ± 0.0 −587.8 ± 0.1 −586.7 ± 0.0 −576.1 ± 0.7 −576.6 ± 1.0 −575.9 ± 0.9 −581.0 ± 1.2 −579.8 ± 1.2

RESS: 0.999 RESS: 0.998 RESS: 0.995 RESS: 0.998 RESS: 0.547 RESS: 0.041 RESS: 0.376 RESS: 0.236 RESS: 0.053
CAR: 0.979 CAR: 0.977 CAR: 0.962 CAR: 0.972 CAR: 0.599 CAR: 0.365 CAR: 0.511 CAR: 0.393 CAR: 0.292

Caprimulgidae
−347.8 ± 0.1 −349.1 ± 0.1 −349.4 ± 0.1 −350.1 ± 0.1 −348.1 ± 0.5 −348.7 ± 0.7 −348.5 ± 0.6 −351.5 ± 1.7 −352.3 ± 3.2

RESS: 0.997 RESS: 0.994 RESS: 0.990 RESS: 0.992 RESS: 0.775 RESS: 0.475 RESS: 0.617 RESS: 0.084 RESS: 0.004
CAR: 0.970 CAR: 0.955 CAR: 0.942 CAR: 0.949 CAR: 0.735 CAR: 0.580 CAR: 0.638 CAR: 0.399 CAR: 0.030

Campephagidae-
−395.7 ± 0.0 −397.0 ± 0.1 −396.4 ± 0.1 −396.9 ± 0.1 −397.0 ± 0.2 −398.7 ± 0.5 −397.9 ± 0.4 −399.0 ± 0.3 −399.7 ± 0.3

RESS: 0.998 RESS: 0.996 RESS: 0.997 RESS: 0.997 RESS: 0.944 RESS: 0.219 RESS: 0.869 RESS: 0.903 RESS: 0.888
CAR: 0.975 CAR: 0.962 CAR: 0.967 CAR: 0.968 CAR: 0.863 CAR: 0.667 CAR: 0.794 CAR: 0.821 CAR: 0.815

Charadrii
−400.3 ± 0.1 −399.9 ± 0.1 −401.9 ± 0.1 −400.2 ± 0.1 −404.3 ± 0.3 −404.5 ± 0.7 −402.4 ± 0.7 −402.2 ± 0.4 −403.9 ± 0.9

RESS: 0.996 RESS: 0.996 RESS: 0.983 RESS: 0.995 RESS: 0.895 RESS: 0.601 RESS: 0.541 RESS: 0.833 RESS: 0.353
CAR: 0.966 CAR: 0.966 CAR: 0.925 CAR: 0.961 CAR: 0.812 CAR: 0.632 CAR: 0.615 CAR: 0.770 CAR: 0.532

Columbidae
−889.0 ± 0.1 −890.7 ± 0.1 −889.4 ± 0.1 −888.9 ± 0.1 −887.4 ± 0.7 −890.4 ± 1.7 −888.4 ± 1.2 −894.1 ± 0.9 −894.0 ± 4.1

RESS: 0.997 RESS: 0.987 RESS: 0.989 RESS: 0.992 RESS: 0.606 RESS: 0.186 RESS: 0.412 RESS: 0.589 RESS: 0.185
CAR: 0.969 CAR: 0.936 CAR: 0.940 CAR: 0.951 CAR: 0.603 CAR: 0.307 CAR: 0.459 CAR: 0.581 CAR: 0.389

Corvidae+
−1594.3 ± 0.1 −1596.8 ± 0.1 −1595.1 ± 0.1 −1596.5 ± 0.1 −1586.0 ± 0.8 −1589.0 ± 1.9 −1587.9 ± 1.3 −1600.0 ± 1.0 −1600.7 ± 3.2

RESS: 0.996 RESS: 0.981 RESS: 0.989 RESS: 0.980 RESS: 0.499 RESS: 0.148 RESS: 0.386 RESS: 0.468 RESS: 0.276
CAR: 0.966 CAR: 0.922 CAR: 0.939 CAR: 0.919 CAR: 0.550 CAR: 0.340 CAR: 0.431 CAR: 0.507 CAR: 0.408

Cuculidae
−881.5 ± 0.1 −883.2 ± 0.1 −883.1 ± 0.2 −883.2 ± 0.1 −882.1 ± 0.4 −884.0 ± 0.6 −882.7 ± 0.5 −886.1 ± 0.6 −889.0 ± 2.8

RESS: 0.994 RESS: 0.982 RESS: 0.976 RESS: 0.987 RESS: 0.855 RESS: 0.698 RESS: 0.794 RESS: 0.705 RESS: 0.129
CAR: 0.957 CAR: 0.923 CAR: 0.912 CAR: 0.937 CAR: 0.776 CAR: 0.676 CAR: 0.729 CAR: 0.671 CAR: 0.277

Emberizidae-
−737.9 ± 0.0 −740.7 ± 0.1 −725.7 ± 0.2 −727.5 ± 0.4 −731.2 ± 0.4 −735.4 ± 1.2 −732.7 ± 0.5 −744.2 ± 1.2 −733.7 ± 2.3

RESS: 0.998 RESS: 0.985 RESS: 0.969 RESS: 0.870 RESS: 0.831 RESS: 0.508 RESS: 0.715 RESS: 0.428 RESS: 0.080
CAR: 0.974 CAR: 0.930 CAR: 0.899 CAR: 0.783 CAR: 0.756 CAR: 0.556 CAR: 0.700 CAR: 0.472 CAR: 0.172

Estrildidae
−567.4 ± 0.0 −569.0 ± 0.1 −567.6 ± 0.1 −568.4 ± 0.1 −569.5 ± 0.7 −571.2 ± 1.1 −570.0 ± 1.1 −570.9 ± 1.0 −569.3 ± 1.5

RESS: 0.998 RESS: 0.995 RESS: 0.998 RESS: 0.996 RESS: 0.639 RESS: 0.384 RESS: 0.394 RESS: 0.320 RESS: 0.064
CAR: 0.977 CAR: 0.961 CAR: 0.972 CAR: 0.966 CAR: 0.629 CAR: 0.452 CAR: 0.464 CAR: 0.471 CAR: 0.199

Fringillidae+
−727.7 ± 0.0 −728.8 ± 0.1 −728.8 ± 0.1 −729.6 ± 0.1 −718.2 ± 0.6 −720.3 ± 0.6 −719.3 ± 0.7 −726.4 ± 0.9 −726.3 ± 0.9

RESS: 0.998 RESS: 0.996 RESS: 0.995 RESS: 0.994 RESS: 0.706 RESS: 0.674 RESS: 0.659 RESS: 0.439 RESS: 0.377
CAR: 0.974 CAR: 0.962 CAR: 0.960 CAR: 0.958 CAR: 0.697 CAR: 0.657 CAR: 0.639 CAR: 0.533 CAR: 0.495

Furnaridae
−1262.7 ± 0.0 −1265.0 ± 0.1 −1263.0 ± 0.1 −1264.7 ± 0.1 −1253.5 ± 0.8 −1256.0 ± 1.0 −1255.1 ± 0.9 −1264.1 ± 1.0 −1262.8 ± 0.9

RESS: 0.998 RESS: 0.989 RESS: 0.996 RESS: 0.988 RESS: 0.537 RESS: 0.456 RESS: 0.494 RESS: 0.426 RESS: 0.487
CAR: 0.974 CAR: 0.941 CAR: 0.965 CAR: 0.938 CAR: 0.594 CAR: 0.520 CAR: 0.547 CAR: 0.509 CAR: 0.527

Hirundinidae
−433.1 ± 0.0 −434.9 ± 0.1 −432.1 ± 0.1 −433.0 ± 0.1 −433.5 ± 0.3 −435.6 ± 0.6 −434.2 ± 0.5 −437.1 ± 0.5 −436.1 ± 0.8

RESS: 0.998 RESS: 0.993 RESS: 0.997 RESS: 0.995 RESS: 0.909 RESS: 0.740 RESS: 0.735 RESS: 0.798 RESS: 0.078
CAR: 0.974 CAR: 0.952 CAR: 0.970 CAR: 0.961 CAR: 0.826 CAR: 0.684 CAR: 0.701 CAR: 0.732 CAR: 0.454

Icteridae
−495.6 ± 0.0 −497.9 ± 0.1 −492.6 ± 0.1 −494.2 ± 0.1 −494.6 ± 0.4 −497.4 ± 0.6 −495.8 ± 0.5 −500.2 ± 0.5 −497.6 ± 0.6

RESS: 0.999 RESS: 0.992 RESS: 0.995 RESS: 0.987 RESS: 0.863 RESS: 0.714 RESS: 0.808 RESS: 0.816 RESS: 0.664
CAR: 0.979 CAR: 0.948 CAR: 0.962 CAR: 0.936 CAR: 0.787 CAR: 0.683 CAR: 0.744 CAR: 0.738 CAR: 0.652

Lari
−743.9 ± 0.0 −738.2 ± 0.0 −742.2 ± 0.1 −738.4 ± 0.1 −710.9 ± 0.5 −712.2 ± 1.0 −711.9 ± 0.9 −718.7 ± 1.1 −718.6 ± 1.0

RESS: 0.998 RESS: 0.998 RESS: 0.989 RESS: 0.996 RESS: 0.783 RESS: 0.482 RESS: 0.558 RESS: 0.502 RESS: 0.536
CAR: 0.978 CAR: 0.972 CAR: 0.942 CAR: 0.964 CAR: 0.717 CAR: 0.538 CAR: 0.570 CAR: 0.520 CAR: 0.556

Malaconotidae+
−501.2 ± 0.1 −503.3 ± 0.1 −498.0 ± 0.1 −497.8 ± 0.1 −494.9 ± 0.5 −498.2 ± 1.1 −495.7 ± 0.7 −506.4 ± 0.9 −503.6 ± 2.6

RESS: 0.997 RESS: 0.987 RESS: 0.995 RESS: 0.994 RESS: 0.797 RESS: 0.438 RESS: 0.732 RESS: 0.458 RESS: 0.056
CAR: 0.968 CAR: 0.935 CAR: 0.959 CAR: 0.957 CAR: 0.736 CAR: 0.499 CAR: 0.685 CAR: 0.554 CAR: 0.213

Meliphagidae-+
−570.6 ± 0.1 −572.8 ± 0.1 −568.6 ± 0.1 −569.1 ± 0.1 −570.4 ± 0.5 −573.0 ± 1.1 −571.2 ± 0.9 −575.9 ± 1.0 −574.4 ± 1.5

RESS: 0.997 RESS: 0.986 RESS: 0.994 RESS: 0.993 RESS: 0.773 RESS: 0.249 RESS: 0.413 RESS: 0.530 RESS: 0.084
CAR: 0.968 CAR: 0.932 CAR: 0.955 CAR: 0.954 CAR: 0.723 CAR: 0.423 CAR: 0.535 CAR: 0.598 CAR: 0.296

Muscicapidae-+
−1576.7 ± 0.1 −1580.3 ± 0.3 −1541.9 ± 0.2 −1543.4 ± 0.6 −1548.3 ± 0.9 −1553.9 ± 2.4 −1549.7 ± 1.4 −1586.3 ± 2.9 −1557.3 ± 8.1

RESS: 0.996 RESS: 0.942 RESS: 0.944 RESS: 0.823 RESS: 0.390 RESS: 0.051 RESS: 0.267 RESS: 0.147 RESS: 0.016
CAR: 0.964 CAR: 0.860 CAR: 0.864 CAR: 0.736 CAR: 0.501 CAR: 0.178 CAR: 0.370 CAR: 0.209 CAR: 0.043

Paridae+
−327.2 ± 0.0 −328.8 ± 0.1 −327.8 ± 0.1 −327.8 ± 0.1 −319.1 ± 0.6 −321.5 ± 0.8 −320.0 ± 0.7 −331.0 ± 1.0 −327.0 ± 3.2

RESS: 0.998 RESS: 0.993 RESS: 0.994 RESS: 0.996 RESS: 0.536 RESS: 0.534 RESS: 0.626 RESS: 0.437 RESS: 0.038
CAR: 0.972 CAR: 0.953 CAR: 0.956 CAR: 0.964 CAR: 0.649 CAR: 0.579 CAR: 0.637 CAR: 0.608 CAR: 0.102
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Table 7: (continued)

Tree CRB CRBD TDB TDBD ClaDS0 ClaDS1 ClaDS2 LSBDS BAMM

Parulidae+
−620.5 ± 0.0 −622.7 ± 0.1 −619.7 ± 0.1 −621.3 ± 0.1 −600.3 ± 0.9 −603.1 ± 1.0 −601.2 ± 1.0 −622.6 ± 1.6 −615.1 ± 2.8

RESS: 0.998 RESS: 0.992 RESS: 0.997 RESS: 0.993 RESS: 0.468 RESS: 0.421 RESS: 0.320 RESS: 0.227 RESS: 0.030
CAR: 0.978 CAR: 0.950 CAR: 0.969 CAR: 0.953 CAR: 0.539 CAR: 0.498 CAR: 0.476 CAR: 0.362 CAR: 0.073

Phasianidae
−808.7 ± 0.0 −809.5 ± 0.1 −809.9 ± 0.1 −809.5 ± 0.1 −810.7 ± 0.5 −811.0 ± 0.7 −810.4 ± 0.8 −812.0 ± 0.7 −812.9 ± 1.1

RESS: 0.998 RESS: 0.996 RESS: 0.993 RESS: 0.996 RESS: 0.813 RESS: 0.558 RESS: 0.460 RESS: 0.573 RESS: 0.125
CAR: 0.972 CAR: 0.963 CAR: 0.954 CAR: 0.964 CAR: 0.746 CAR: 0.611 CAR: 0.564 CAR: 0.613 CAR: 0.400

Picidae
−830.7 ± 0.0 −832.8 ± 0.1 −831.8 ± 0.1 −833.4 ± 0.1 −828.5 ± 0.8 −830.2 ± 1.1 −830.6 ± 1.5 −835.4 ± 1.5 −835.7 ± 2.7

RESS: 0.998 RESS: 0.991 RESS: 0.995 RESS: 0.987 RESS: 0.547 RESS: 0.334 RESS: 0.190 RESS: 0.173 RESS: 0.028
CAR: 0.974 CAR: 0.945 CAR: 0.959 CAR: 0.934 CAR: 0.597 CAR: 0.444 CAR: 0.339 CAR: 0.291 CAR: 0.068

Procellariidae
−686.0 ± 0.1 −684.0 ± 0.1 −686.5 ± 0.2 −684.8 ± 0.1 −680.8 ± 0.7 −681.9 ± 0.9 −681.0 ± 0.9 −685.4 ± 1.0 −687.1 ± 1.4

RESS: 0.997 RESS: 0.996 RESS: 0.972 RESS: 0.993 RESS: 0.638 RESS: 0.444 RESS: 0.486 RESS: 0.324 RESS: 0.058
CAR: 0.967 CAR: 0.965 CAR: 0.905 CAR: 0.954 CAR: 0.628 CAR: 0.559 CAR: 0.535 CAR: 0.447 CAR: 0.299

Psittacidae1
−690.7 ± 0.1 −688.8 ± 0.1 −690.9 ± 0.1 −689.2 ± 0.1 −691.9 ± 0.6 −692.5 ± 1.0 −691.5 ± 0.9 −691.4 ± 0.7 −693.0 ± 2.0

RESS: 0.997 RESS: 0.997 RESS: 0.987 RESS: 0.995 RESS: 0.713 RESS: 0.426 RESS: 0.339 RESS: 0.636 RESS: 0.232
CAR: 0.972 CAR: 0.969 CAR: 0.934 CAR: 0.962 CAR: 0.685 CAR: 0.511 CAR: 0.493 CAR: 0.633 CAR: 0.419

Psittacidae2
−729.5 ± 0.0 −730.3 ± 0.1 −730.7 ± 0.1 −731.3 ± 0.1 −726.6 ± 0.5 −727.8 ± 0.7 −727.3 ± 0.7 −731.5 ± 0.8 −732.3 ± 0.7

RESS: 0.998 RESS: 0.995 RESS: 0.990 RESS: 0.992 RESS: 0.772 RESS: 0.194 RESS: 0.529 RESS: 0.436 RESS: 0.595
CAR: 0.972 CAR: 0.962 CAR: 0.944 CAR: 0.950 CAR: 0.715 CAR: 0.561 CAR: 0.585 CAR: 0.540 CAR: 0.643

Pycnonotidae-+
−589.9 ± 0.1 −592.3 ± 0.1 −584.0 ± 0.1 −584.9 ± 0.1 −585.9 ± 0.5 −588.9 ± 0.9 −586.9 ± 0.7 −595.1 ± 0.6 −589.8 ± 1.9

RESS: 0.997 RESS: 0.983 RESS: 0.995 RESS: 0.991 RESS: 0.803 RESS: 0.457 RESS: 0.638 RESS: 0.772 RESS: 0.482
CAR: 0.970 CAR: 0.926 CAR: 0.958 CAR: 0.947 CAR: 0.740 CAR: 0.545 CAR: 0.626 CAR: 0.706 CAR: 0.542

Ramphastidae
−475.0 ± 0.0 −475.0 ± 0.1 −475.9 ± 0.1 −475.7 ± 0.1 −476.8 ± 0.5 −478.3 ± 0.8 −477.4 ± 0.7 −477.0 ± 0.5 −478.2 ± 0.6

RESS: 0.998 RESS: 0.998 RESS: 0.993 RESS: 0.996 RESS: 0.795 RESS: 0.480 RESS: 0.493 RESS: 0.811 RESS: 0.483
CAR: 0.974 CAR: 0.972 CAR: 0.952 CAR: 0.966 CAR: 0.736 CAR: 0.584 CAR: 0.606 CAR: 0.750 CAR: 0.633

Strigidae
−645.2 ± 0.1 −646.4 ± 0.1 −646.8 ± 0.1 −647.7 ± 0.1 −647.5 ± 0.6 −649.8 ± 1.0 −649.1 ± 0.9 −649.1 ± 0.8 −650.9 ± 1.0

RESS: 0.997 RESS: 0.993 RESS: 0.987 RESS: 0.984 RESS: 0.689 RESS: 0.501 RESS: 0.468 RESS: 0.560 RESS: 0.464
CAR: 0.968 CAR: 0.954 CAR: 0.935 CAR: 0.928 CAR: 0.677 CAR: 0.531 CAR: 0.517 CAR: 0.589 CAR: 0.558

Sturnidae+
−794.2 ± 0.1 −796.6 ± 0.1 −792.9 ± 0.1 −794.2 ± 0.1 −793.2 ± 0.6 −795.6 ± 1.0 −794.5 ± 1.0 −799.2 ± 0.7 −797.9 ± 0.9

RESS: 0.997 RESS: 0.987 RESS: 0.995 RESS: 0.992 RESS: 0.670 RESS: 0.302 RESS: 0.408 RESS: 0.668 RESS: 0.426
CAR: 0.971 CAR: 0.935 CAR: 0.961 CAR: 0.949 CAR: 0.661 CAR: 0.481 CAR: 0.520 CAR: 0.652 CAR: 0.520

Syvliidae1+
−453.3 ± 0.0 −454.1 ± 0.1 −454.4 ± 0.1 −454.6 ± 0.1 −442.9 ± 0.5 −445.0 ± 0.7 −444.2 ± 0.7 −451.0 ± 0.7 −451.5 ± 0.9

RESS: 0.998 RESS: 0.997 RESS: 0.995 RESS: 0.996 RESS: 0.787 RESS: 0.519 RESS: 0.605 RESS: 0.571 RESS: 0.357
CAR: 0.975 CAR: 0.971 CAR: 0.962 CAR: 0.966 CAR: 0.721 CAR: 0.620 CAR: 0.616 CAR: 0.612 CAR: 0.569

Sylviidae2+
−540.6 ± 0.0 −542.1 ± 0.1 −541.3 ± 0.1 −541.7 ± 0.1 −537.4 ± 0.6 −539.4 ± 0.7 −538.4 ± 0.7 −544.2 ± 0.6 −544.2 ± 1.1

RESS: 0.998 RESS: 0.994 RESS: 0.997 RESS: 0.996 RESS: 0.698 RESS: 0.634 RESS: 0.603 RESS: 0.659 RESS: 0.195
CAR: 0.975 CAR: 0.958 CAR: 0.967 CAR: 0.966 CAR: 0.678 CAR: 0.631 CAR: 0.610 CAR: 0.664 CAR: 0.423

Thamnophilidae
−1061.2 ± 0.1 −1064.2 ± 0.2 −1049.0 ± 0.1 −1050.5 ± 0.2 −1046.9 ± 0.9 −1050.2 ± 2.3 −1048.6 ± 1.3 −1067.7 ± 1.1 −1056.6 ± 2.4

RESS: 0.997 RESS: 0.974 RESS: 0.989 RESS: 0.970 RESS: 0.513 RESS: 0.140 RESS: 0.206 RESS: 0.476 RESS: 0.002
CAR: 0.970 CAR: 0.909 CAR: 0.940 CAR: 0.901 CAR: 0.542 CAR: 0.306 CAR: 0.365 CAR: 0.511 CAR: 0.004

Thraupidae1+
−935.9 ± 0.0 −938.3 ± 0.1 −931.3 ± 0.1 −932.2 ± 0.2 −919.5 ± 1.0 −922.8 ± 1.2 −920.1 ± 1.0 −935.9 ± 0.8 −926.0 ± 1.1

RESS: 0.998 RESS: 0.989 RESS: 0.993 RESS: 0.977 RESS: 0.309 RESS: 0.180 RESS: 0.406 RESS: 0.559 RESS: 0.264
CAR: 0.976 CAR: 0.940 CAR: 0.951 CAR: 0.913 CAR: 0.476 CAR: 0.391 CAR: 0.484 CAR: 0.594 CAR: 0.423

Thraupidae2+
−807.6 ± 0.0 −810.1 ± 0.1 −801.6 ± 0.1 −803.1 ± 0.2 −791.0 ± 0.6 −794.1 ± 1.0 −791.7 ± 0.7 −807.6 ± 1.8 −798.7 ± 1.6

RESS: 0.998 RESS: 0.988 RESS: 0.990 RESS: 0.970 RESS: 0.730 RESS: 0.471 RESS: 0.558 RESS: 0.311 RESS: 0.109
CAR: 0.976 CAR: 0.938 CAR: 0.944 CAR: 0.901 CAR: 0.682 CAR: 0.528 CAR: 0.595 CAR: 0.522 CAR: 0.239

Timaliidae-+
−1120.2 ± 0.0 −1121.0 ± 0.1 −1121.4 ± 0.1 −1121.4 ± 0.1 −1082.9 ± 1.5 −1084.8 ± 1.6 −1084.3 ± 1.8 −1096.5 ± 2.2 −1095.5 ± 3.2

RESS: 0.998 RESS: 0.996 RESS: 0.995 RESS: 0.995 RESS: 0.205 RESS: 0.161 RESS: 0.076 RESS: 0.131 RESS: 0.013
CAR: 0.974 CAR: 0.963 CAR: 0.960 CAR: 0.958 CAR: 0.332 CAR: 0.295 CAR: 0.206 CAR: 0.207 CAR: 0.030

Trochilidae
−1567.5 ± 0.1 −1569.7 ± 0.1 −1567.9 ± 0.1 −1569.0 ± 0.1 −1562.8 ± 0.9 −1565.4 ± 1.3 −1563.9 ± 1.2 −1573.0 ± 3.8 −1573.0 ± 3.7

RESS: 0.997 RESS: 0.983 RESS: 0.992 RESS: 0.986 RESS: 0.483 RESS: 0.363 RESS: 0.366 RESS: 0.273 RESS: 0.097
CAR: 0.968 CAR: 0.926 CAR: 0.948 CAR: 0.933 CAR: 0.534 CAR: 0.435 CAR: 0.439 CAR: 0.378 CAR: 0.190

Troglodytidae+
−545.7 ± 0.0 −547.8 ± 0.1 −546.0 ± 0.1 −547.4 ± 0.1 −547.8 ± 0.4 −550.5 ± 0.7 −549.3 ± 0.6 −550.3 ± 0.6 −550.7 ± 1.0

RESS: 0.998 RESS: 0.989 RESS: 0.996 RESS: 0.991 RESS: 0.846 RESS: 0.643 RESS: 0.742 RESS: 0.736 RESS: 0.346
CAR: 0.973 CAR: 0.941 CAR: 0.963 CAR: 0.948 CAR: 0.773 CAR: 0.621 CAR: 0.693 CAR: 0.681 CAR: 0.515

Turdidae-+
−830.1 ± 0.1 −833.0 ± 0.2 −821.3 ± 0.1 −822.7 ± 0.2 −813.0 ± 0.9 −817.4 ± 1.5 −814.4 ± 1.0 −836.0 ± 0.8 −826.4 ± 2.2

RESS: 0.997 RESS: 0.975 RESS: 0.992 RESS: 0.978 RESS: 0.508 RESS: 0.299 RESS: 0.461 RESS: 0.578 RESS: 0.014
CAR: 0.970 CAR: 0.910 CAR: 0.949 CAR: 0.915 CAR: 0.550 CAR: 0.373 CAR: 0.498 CAR: 0.594 CAR: 0.043

Tyrannidae+
−2273.6 ± 0.1 −2276.0 ± 0.2 −2274.1 ± 0.1 −2275.1 ± 0.2 −2262.0 ± 1.0 −2262.7 ± 1.6 −2260.9 ± 1.3 −2278.2 ± 8.8 −2281.7 ± 11.4

RESS: 0.995 RESS: 0.971 RESS: 0.985 RESS: 0.978 RESS: 0.334 RESS: 0.176 RESS: 0.275 RESS: 0.096 RESS: 0.004
CAR: 0.961 CAR: 0.902 CAR: 0.931 CAR: 0.915 CAR: 0.489 CAR: 0.300 CAR: 0.387 CAR: 0.171 CAR: 0.006
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Table 8 Median execution time in Birch in seconds for each tree and model. See text for details.

Tree CRB CRBD TDB TDBD ClaDS0 ClaDS1 ClaDS2 LSBDS BAMM

Accipitridae 14 27 30 35 400 460 606 860 2097
Alcedinidae 4 8 8 11 77 95 214 154 792
Anatinae 8 17 19 22 222 236 631 226 1719
Caprimulgidae 4 9 10 11 96 115 209 289 958
Campephagidae- 5 11 12 14 107 120 221 124 966
Charadrii 5 11 11 13 109 134 571 328 890
Columbidae 10 20 23 27 258 295 475 310 1918
Corvidae+ 18 36 41 47 570 636 820 415 2852
Cuculidae 10 19 22 25 241 271 380 441 1730
Emberizidae- 10 19 23 25 234 260 450 222 1669
Estrildidae 8 16 17 20 179 213 613 200 1344
Fringillidae+ 10 18 21 25 212 233 287 209 1329
Furnaridae 15 30 35 41 463 520 625 243 1941
Hirundinidae 6 12 13 15 111 129 277 180 942
Icteridae 7 15 17 20 152 178 334 159 1077
Lari 9 19 22 25 228 238 477 295 1295
Malaconotidae+ 6 12 14 16 131 155 512 813 1091
Meliphagidae-+ 7 14 16 18 150 173 326 257 1140
Muscicapidae-+ 18 36 40 47 576 640 909 414 2941
Paridae+ 4 8 9 11 84 98 216 429 677
Parulidae+ 8 18 20 24 210 234 366 257 1527
Phasianidae 10 21 25 26 245 267 412 230 1348
Picidae 10 21 24 28 269 279 456 295 1611
Procellariidae 8 16 18 20 193 231 386 267 1351
Psittacidae1 8 17 19 22 205 219 477 316 1237
Psittacidae2 9 18 21 22 216 237 360 220 1425
Pycnonotidae-+ 7 14 17 19 144 169 243 182 1261
Ramphastidae 6 13 15 15 122 138 299 233 851
Strigidae 8 15 18 20 170 204 392 232 1198
Sturnidae+ 9 19 21 27 247 251 352 237 1538
Syvliidae1+ 6 10 14 16 114 141 276 279 864
Sylviidae2+ 7 14 16 17 152 158 315 287 883
Thamnophilidae 12 24 28 33 327 418 524 415 1802
Thraupidae1+ 12 27 27 34 314 363 428 224 1673
Thraupidae2+ 11 23 24 30 327 323 723 277 1753
Timaliidae-+ 14 27 31 32 366 411 481 262 1864
Trochilidae 18 33 41 47 578 657 821 432 2699
Troglodytidae+ 7 13 16 18 149 171 289 182 1193
Turdidae-+ 10 21 23 27 251 284 426 223 1447
Tyrannidae+ 23 48 55 63 963 1022 2073 2064 3250
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Accipitridae Alcedinidae Anatinae Caprimulgidae
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Ẑ

λ
,
µ
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z
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0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 13 Normalization constants and parameter estimates for Accipitridae, Alcedinidae, Anatinae, Caprimulgidae.
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Campephagidae- Charadrii Columbidae Corvidae+
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• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 14 Normalization constants and parameter estimates for Campephagidae-, Charadrii, Columbidae, Corvidae+.
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Cuculidae Emberizidae- Estrildidae Fringillidae+
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• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 15 Normalization constants and parameter estimates for Cuculidae, Emberizidae-, Estrildidae, Fringillidae+.
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Furnaridae Hirundinidae Icteridae Lari
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• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 16 Normalization constants and parameter estimates for Furnaridae, Hirundinidae, Icteridae, Lari.
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Malaconotidae+ Meliphagidae-+ Muscicapidae-+ Paridae+
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Ẑ

λ
,
µ

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

z

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

lo
g
α

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

σ
2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

η

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 17 Normalization constants and parameter estimates for Malaconotidae+, Meliphagidae-+, Muscicapidae-+, Paridae+.
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Parulidae+ Phasianidae Picidae Procellariidae
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Ẑ

λ
,
µ

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

z

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

lo
g
α

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

σ
2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

η

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

• CRB • CRBD • TDB • TDBD • ClaDS0 • ClaDS1 • ClaDS2 • LSBDS • BAMM

Fig. 18 Normalization constants and parameter estimates for Parulidae+, Phasianidae, Picidae, Procellariidae.
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Psittacidae1 Psittacidae2 Pycnonotidae-+ Ramphastidae
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Fig. 19 Normalization constants and parameter estimates for Psittacidae1, Psittacidae2, Pycnonotidae-+, Ramphastidae.
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Strigidae Sturnidae+ Syvliidae1+ Sylviidae2+
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Fig. 20 Normalization constants and parameter estimates for Strigidae, Sturnidae+, Syvliidae1+, Sylviidae2+.
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Thamnophilidae Thraupidae1+ Thraupidae2+ Timaliidae-+
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Fig. 21 Normalization constants and parameter estimates for Thamnophilidae, Thraupidae1+, Thraupidae2+, Timaliidae-+.
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Trochilidae Troglodytidae+ Turdidae-+ Tyrannidae+
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Fig. 22 Normalization constants and parameter estimates for Trochilidae, Troglodytidae+, Turdidae-+, Tyrannidae+.
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Fig. 23 Prior distributions plotted for the same region of parameter space used for the posterior distributions in Supplementary Figures 13–22.

all trees bear a clear mark of lineage-specific or, at least, slowing (TDB(D)) diversification. The age of the tree appears to be
positively related to the adequacy of simple diversification models. Of the ten youngest trees, only two (Estrildidae+ and Icteridae;
Supplementary Figures 15 and 16, respectively) lack strong support for lineage-specific or slowing diversification, while this is
fairly common among the oldest trees.

These patterns appear to be best explained by the density of branching events in the reconstructed tree. The more branching
events there are per unit time, the more likely it is that the evolutionary process has left signs of density-dependent or lineage-
specific diversification. These fluctuations in diversification rates may tend to even out over longer time scales, as old and
species-poor trees are often adequately explained by simple models. However, there are clear exceptions. For instance, the
Paridae+ (Supplementary Figure 17) shows clear evidence of lineage-specific diversification, despite being an old group (40.9
Ma) with relatively few species (55).

Overall, our results clearly illustrate that Bayes factors are inherently conservative, preferring simpler models unless the signal
in the data is sufficiently strong to decisively reject them. While this could be considered a reasonable feature, some caution is
nevertheless needed when interpreting the outcome of the model comparison experiment. In particular, the fact that very simple
models seem adequate for so many of the bird clades appears to largely reflect the lack of (sufficiently strong) evidence and should
not be interpreted as evidence of absence. Many of the trees analysed here (and elsewhere) are too small or not informative
enough to allow for a non-trivial outcome.

The degree to which Bayes factors are conservative is dependent on the prior distributions used for the additional parameters
of the more complex models. More diffuse priors automatically result in higher penalties in the model comparison—and this even
if the posterior distribution itself is not impacted or only marginally impacted. Often, this is not a major problem, for instance
when comparing models of sequence evolution, where the signal contributed by the sequence data easily overwhelms the penalty
induced by diffuse priors. Here, in contrast, the empirical signal contributed by phylogenetic trees of surviving lineages about
the underlying diversification process is somewhat weaker, making the relative impact of the prior on the outcome of Bayesian
model tests more substantial.

Whether our priors strike a reasonable balance between simple and complex models is, of course, open to discussion. We
note, however, that our priors for the ClaDS models are less conservative than the ones proposed originally for these models30.
Thus, our priors penalize the ClaDS models less than would otherwise have been the case. We also want to re-emphasize that, to
allow fair model comparisons, we chose priors on analogous model parameters that were similar, if not identical, across models.

An alternative to Bayesian model comparison is to focus on model adequacy, that is, the extent to which the models are
consistent with the data. A popular approach to assess model adequacy is to use posterior predictive checks, but this requires the
specification of an appropriate discrepancy measure48. A general criterion of model adequacy that avoids this difficulty is the
recently introduced data consistency criterion49. However, we refrain from pursuing this topic further here.

10.2 Robustness of complex models
An important result that emerges from our analyses, and that we want to emphasize, is the robustness of complex diversification
models. Even when Bayes factors indicate that simple models are adequate, the more sophisticated models often give consistent
estimates for the additional model parameters. Good examples are provided by the posterior estimates for σ2, describing the rate
of gradual, lineage-specific change in diversification rates in the ClaDS models, and η, denoting the rate of punctuated change
in the LSBDS and BAMM models; both of these parameters are usually estimated to be close to 0 when simple models appear
adequate. Similarly, the parameters related to potential density-dependent effects (z for TDB(D) and BAMM, and logα for

146 PAPERS



ClaDS) are often close to 0 when the CRB(D) models have the best marginal likelihoods. Furthermore, no-extinction models ,
such as ClaDS0, often have higher marginal likelihoods than their counterparts that accommodate extinction. However, in these
cases, the more complex models almost always estimate extinction or turnover rates that are close to 0. This usually occurs with
very little impact on the estimation of other parameters, as is well illustrated by the very similar posterior distributions obtained
across the ClaDS model series, despite the fact that ClaDS0 often has (slightly) better marginal likelihood than the more complex
variants.

If the results are scrutinized, one discovers that the advanced diversification models actually appear to pick up weak but
consistent signal for more complex patterns even when they are not favored by the model tests. For instance, when posterior
estimates of logα or z are significantly different from 0 in these cases, the estimates always suggest slowing diversification rates,
and the models that accommodate such variation over time tend to be the ones with the best model likelihoods, even if they are
only marginally better than the constant-rate models. Taken together, these observations suggest that the more complex models
might in fact be generally more adequate than the simpler ones. The risk of obtaining erroneous or misleading inference under
more complex models appears to be low, at least in comparisons among nested models with similar dimensionality.

10.3 Slowing diversification rates
The strongest signal across bird clades in our analyses is undoubtedly the support for slowing diversification rates. This is seen
already in the model comparisons but perhaps more clearly in the posterior estimates of logα in the ClaDS models, and z in
the TDB(D) and BAMM models (Supplementary Figures 13–22). The estimates are almost universally below 0, indicating
decelerating rates, and usually significantly so (more than 95% of the credible interval on negative values). Nowhere is the
signal more evident than in the four bird clades where the models that only account for changing diversification rates over
time—the TDB(D) models—come out distinctly ahead of all others in the model comparison (Emberizidae-, Meliphagidae-+,
Muscicapidae-+ and Pycnonotidae-+). In two of those cases (Emberizidae- and Muscicapidae-+; Supplementary Figures 15 and
17, respectively), the Bayes factors even provide strong evidence in favor of TDB(D) over all other models.

Diversification rates that slow down over time are usually attributed to competition for limited resources or niches50,51,52.
Alternative explanations that have been proposed include: (1) subdivision of geographic ranges at speciation; (2) speciation bursts
driven by environmental or geological change; (3) failure to keep pace with environmental change; and (4) protracted speciation
(related to the diversified sampling bias, see below)53. It might be possible to tease apart some of these factors by developing
more sophisticated diversification models within the PPL framework, but this is outside the scope of the current paper. Regardless
of the causes, it is clear that there is a strong signature of slowing diversification rates in the bird clades, and that it is important
to account for this in diversification models.

10.4 Gradual change, punctuated change or both?
Unsurprisingly, there is also clear evidence of variation across lineages in diversification rates. Of the 40 bird trees, Bayes factors
strongly favor models accommodating lineage-specific effects over simpler ones in 15 cases. Even in the remaining cases, there is
often some support for lineage-specific variation in diversification rates, as indicated by posterior estimates of model parameters.

The ClaDS models consistently explain this variation in diversification rates better than the LSBDS and BAMM models. In
fact, there are only three groups for which the LSBDS and BAMM models are strongly favored over the corresponding simple
models: Anatinae, Lari, and Timaliidae-+ (Supplementary Figures 13, 16 and 21, respectively), The BAMM model also does
comparatively well on the Thraupidae1+ tree (Supplementary Figure 21). As expected, these trees are also associated with
posterior estimates of η that differ substantially from 0. However, even for these trees, where BAMM and LSBDS detect major
shifts in diversification rates, the ClaDS models provide a better fit to the data.

We may conclude that lineage-specific differences in diversification rates are better explained by slow, gradual changes, which
accumulate over time, than by a few events that drastically alter the rates. One possible explanation for this is that the punctuated
models (BAMM and LSBDS) draw the new λ and µ (and z for BAMM) values from diffuse priors at process switching events.
This means that they carry heavy penalties in Bayes factor comparisons; the more switches there are, the heavier the penalty
against these models. An interesting difference between the punctuated models and the gradual models is that the former allow
both λ and µ to vary over the tree, while only λ is modulated over the tree in the latter. Could this be the explanation for the
gradual models outperforming the punctuated models? We tested this by modifying LSBDS and BAMM such that they assumed
a constant turnover rate (ε = µ/λ), as in ClaDS2, and only varied λ (and z for BAMM) at switching points. We then re-computed
the normalization constants for Lari, one of the clades with the strongest evidence for major shifts in diversification rates. The
normalization constants of the punctuated models did not improve noticeably due to this modification (results not shown). This
finding suggests that the strong evidence in favor of gradual over punctuated change is not due simply to the punctuated models
postulating changes in extinction rates that are not supported by the data.

A fascinating question is whether there remains any evidence for occasional major shifts in diversification rates if one first
adequately accounts for the strong underlying signal of slow and gradual change. This can now be examined by extending the PPL
framework we present here to diversification models that combine ClaDS-like and BAMM-like features. Given the general lack
of support for radical shifts in diversification rates across the bird trees, it seems likely that such shifts are rare, if they occur at
all. Therefore, identifying them would presumably require analyses of larger trees than the ones examined here. However, it also
seems likely that the two processes interact, such that it becomes more difficult to detect major shifts when the gradual changes
are not accounted for. Thus, it is possible that there are major shifts in the bird trees that our analyses failed to detect because of
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shortcomings in the models. We will have to await future analyses using more sophisticated models before we know whether this
is the case.

10.5 Discretizing punctuated-change models
Computing likelihoods for punctuated models of diversification by integrating out the rate priors using discrete approximations
is potentially a very powerful approach29. It allows for robust and computationally efficient MCMC inference, as long as a small
number of rate categories yield sufficiently accurate likelihood estimates. This decidedly appears to be the case, especially if only
changes in speciation rate are modeled; empirical analyses suggest that ten categories is quite sufficient for most problems29.

Unfortunately, it is difficult to see how this approach can be extended to accommodate slowing (or increasing) diversification
rates over times as in BAMM, because then it would be necessary to integrate out an infinite number of rate acceleration or
deceleration processes with different starting points. This appears to be an important limitation from an empirical perspective,
at least judging by the bird trees we analyzed. The LSBDS model does not fit many of the reconstructed trees well; this is
undoubtedly linked to the substantial support for slowing diversification rates in most bird clades. If we restrict our attention to
models of punctuated change, we find 8 trees with strong evidence favoring the BAMM model over the LSBDS model. There is
not a single tree for which the evidence goes strongly in the other direction.

10.6 Sampling biases
Some of the results that emerge from our analyses are probably due, at least in part, to sampling biases. The lack of evidence
for extinction rates above zero is an obvious case. Models without extinction (CRB, TDB, ClaDS0) almost always do better
than models with extinction (Supplementary Figures 13–22). The most notable exception is the Lari (gulls), where the CRBD
and TDBD models significantly outperform their non-extinction counterparts (Supplementary Figure 16). A similar but much
weaker signal is seen in a few other groups: the Anatinae (Supplementary Figure 13), Charadrii (Supplementary Figure 14),
Procellariidae (Supplementary Figure 18) and Psittacidae1 (Supplementary Figure 19). The outcome of the model comparison
is generally consistent with posterior estimates of µ under the models that do accommodate extinction (CRBD and TDBD). That
is, estimated extinction rates are usually low except for Lari, and to a lesser extent for the other groups that weakly favor models
that accommodate extinction. Interestingly, Lari is also unusual in that there is evidence for accelerating speciation rates (z > 0).
However, this occurs only in the TDB model, and is probably an artefact of not accounting for extinction, as extinction rates
noticeably above zero are expected to lead to an apparent acceleration of speciation rates close to the present in reconstructed
trees25.

The lack of support for extinction in our analyses is consistent with results from previous diversification studies52. Given the
overwhelming evidence for frequent extinction in the fossil record, these results are not plausible. Clearly, current phylogenetic
diversification analyses tend to underestimate extinction rates. An important factor that may contribute toward such underesti-
mation of extinction rates is the diversified sampling bias54. This is the tendency of biologists to systematically select leaves
of phylogenetic trees in such a way that the diversity represented in the sampled tree is maximized, instead of choosing leaves
randomly as assumed by standard birth-death models. The diversified sampling bias will lead to pruning of the most recent splits
from the complete reconstructed tree. The more incomplete the sampling is, the deeper the period that is devoid of splits will
extend into the past. In the most extreme cases, the sampled tree will look like a bush: most of the splits will be close to the
root of the tree, and all the leaves will sit on long terminal branches. If one analyzes a tree sampled to maximize diversity under
a model assuming random sampling, extinction rates can be substantially underestimated54. Failing to account for diversified
sampling bias can also result in severe biases in divergence time estimates55,56.

The bird trees we examined here represent fairly complete samples of extant species (from about half of the species and
up), with no obvious biases (Table 6). Nevertheless, it is easy to show that they are characterized to some extent by diversified
sampling. In total, the bird data include 9,993 species, 6,670 of which were sampled for sequencing44. Only the latter were
included in the trees we examined here. If the sequenced species were chosen randomly, then they would include approximately
the same number of genera as any random sample of 6,670 species. However, the sequenced species cover as many as 1,880
genera, while 10,000 random samples of 6,670 species included only 1,759 genera on average (range 1,703 to 1,808). Thus,
the sequenced set has significantly fewer species per genus than expected by chance, the type of bias we would predict from
diversified sampling.

A similar bias that may also affect our results is that incipient species, sibling species and subspecies are likely to be
underrepresented in the data. Some of those lineages will eventually develop into true species, and should be included in
estimates of speciation and extinction rates at the species level. Unacknowledged diversified sampling around or just above the
species level is linked to the phenomenon of protracted speciation57.

Interestingly, diversified sampling bias that is not accounted for correctly could also contribute to the strong support for
slowing diversification rates, even though there are also plausible biological explanations for such patterns53. To understand why
diversified sampling may give the impression of slowing diversification, consider that the extinction rate estimates are largely
based on the apparent acceleration of speciation towards the recent seen in surviving trees because there has not been time enough
for extinction of the side lineages that will eventually disappear25. Diversified sampling would systematically remove the evidence
for this apparent acceleration in speciation rates.

As one might expect, there is also a link between the posterior estimates of extinction and the evidence for slowing diversi-
fication rates. Specifically, models that accommodate slowing diversification rates (TDBD, ClaDS models and BAMM) are also
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associated with distinctly higher estimates of initial extinction rates than models that do not (LSBDS, CRBD) (Supplementary
Figures 13–22). How this link might be affected by diversified sampling biases is currently unclear. Pursuing this topic further
would be outside of the scope of the current paper. However, we do note that it is relatively straightforward to modify our script
to account for diversified sampling according to the model suggested by Höhna et al. 54 , or potentially even more realistic models.

Some recent papers have suggested that unrealistically low extinction rate estimates may be the result of applying models
that do not account for the heterogeneity across lineages in diversification rates that characterize most phylogenetic trees58,31.
If this were true, then one would expect extinction rate estimates in our analyses to be higher for models that accommodate
lineage-specific variation than for comparable models that do not. However, this is not the case. For instance, extinction rate
estimates are similar or lower for LSBDS than for the comparable CRBD model (Supplementary Figures 13–22). Similarly, the
estimates are similar or lower for ClaDS1 than for CRBD. The initial extinction rate estimates of the ClaDS2 and BAMMmodels
are best compared to the analogous estimates for the TDBD model, which does not accommodate variation across lineages in
diversification rates. These estimates are similar for most bird trees (less clear for BAMM than for ClaDS2), further supporting
the conclusion that unaccommodated heterogeneity in diversification rates is not responsible for the low extinction rate estimates.
Of course, we cannot exclude the possibility that even more sophisticated models than the ones examined here could show that
extinction rates are underestimated because of shortcomings in the modeling of across-lineage variation in diversification rates.

10.7 Statistical power
Reconstructed trees carry only a limited amount of information about absolute speciation and extinction rates. This is illustrated
well by the underestimation of extinction rates discussed above. For really powerful analyses of diversification processes, we need
trees that include data from the fossil record, that is, observations of both extinct and extant lineages59. In most cases, however,
observation of extinct lineages is not possible, or the information about extinct lineages is bound to be very incomplete, so we
need to extract as much information as possible from trees that only (or mainly) comprise surviving lineages. There are several
ways in which analyses of such trees can be improved. Addressing sampling biases appropriately would be an important step in
the right direction. Making the model of the diversification process itself more realistic, for instance by combining gradual and
punctuated change as suggested above, would be another. However, the most obvious way to improve the analyses would be to
increase the amount of data.

A natural way of extending the present work in this direction would be to opt for a hierarchical model-averaging approach,
in which all trees in a set, such as the bird clades, would be analyzed simultaneously. Specifically, each tree would randomly
choose from a mixture of all available models, while the mixture proportions and the hyper-parameters tuning the priors over
model-specific parameters would themselves be estimated across trees, using a hierarchical modeling design. Global estimation
of hyper-priors and mixture weights based on the whole collection of trees is an efficient way to fit the priors to the true prevalence
of alternative modes of diversification and the true variation in parameter values present in the data and therefore should result in
well-calibrated model selection. Joint analysis of all trees would also make it possible to collect the weak signals disseminated
across the many small trees of the analysis. Such developments are exactly what the probabilistic programming framework
introduced here is meant to facilitate.

A completely different approach would be to analyze larger portions of the tree of life. For instance, our analyses of 40 bird
clades could have been replaced with a single analysis of the entire bird tree, doubling the coverage of bird species (from 5,000 to
10,000). Such an analysis would not only include more of the variation seen across terminal clades, it would also add data on the
deeper splits in the tree. These splits could potentially inform the model about long-term macroevolutionary patterns that could
not be detected in analyses of only terminal clades, regardless of how sophisticated. For instance, it has been suggested that the
bird radiation as a whole is characterized by rare but major boosts in diversification rates, presumably linked to key innovations
opening up new ecological niches44. If these upward jumps in diversification rates are substantial enough, it could explain why
there is overwhelming support for slowing diversification rates in individual bird clades, even though the rates appear to be
accelerating over the bird tree as a whole44. Such a mega-analysis would have to be based on a model that is more sophisticated
than the ones explored here. Minimally, it would have to account for both gradual and punctuated change in diversification
rates. Ideally, it would also account for variation across lineages in the strength of the slowing forces on diversification, and in
the rate of gradual change in speciation and extinction rates. Again, such developments are well supported by the probabilistic
programming framework, although it is still an open question whether current inference strategies are efficient enough or whether
further refinement is needed.
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Abstract

We consider probabilistic programming for birth-death models of evolution and introduce a new widely-
applicable inference method that combines an extension of the alive particle filter (APF) with automatic Rao-
Blackwellization via delayed sampling. Birth-death models of evolution are an important family of phylogenetic
models of the diversification processes that lead to evolutionary trees. Probabilistic programming languages
(PPLs) give phylogeneticists a new and exciting tool: their models can be implemented as probabilistic programs
with just a basic knowledge of programming. The general inference methods in PPLs reduce the need for external
experts, allow quick prototyping and testing, and accelerate the development and deployment of new models. We
show how these birth-death models can be implemented as simple programs in existing PPLs, and demonstrate
the usefulness of the proposed inference method for such models. For the popular BiSSE model the method
yields an increase of the effective sample size and the conditional acceptance rate by a factor of 30 in comparison
with a standard bootstrap particle filter. Although concentrating on phylogenetics, the extended APF is a general
inference method that shows its strength in situations where particles are often assigned zero weight. In the case
when the weights are always positive, the extra cost of using the APF rather than the bootstrap particle filter
is negligible, making our method a suitable drop-in replacement for the bootstrap particle filter in probabilistic
programming inference.

1 Introduction

The development of new probabilistic models of evolution is an important part of statistical phylogenetics. These
models require inference algorithms that are able to cope with increased model complexity as well as the larger
amount of observational data available today. Experts from several fields typically need to be involved, both to
design bespoke inference algorithms, and to implement the new models and the inference algorithms in existing
software or to develop new software from scratch. Probabilistic programming languages (PPLs) (e.g., Goodman
et al., 2008; Tolpin et al., 2016; Mansinghka et al., 2014; Paige and Wood, 2014) have the potential to accelerate
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this: generative models are specified as simple programs and compiled into executable applications that include
general inference engines. Writing models in PPLs requires just basic programming skills, and thus allows quick
prototyping and testing.

Quite a few software applications for statistical phylogenetics exist today, including the popular MrBayes (Huelsen-
beck and Ronquist, 2001) and BEAST (Drummond and Rambaut, 2007). They typically take a Bayesian approach
and implement Markov chain Monte Carlo inference (see review by Nascimento et al., 2017). Most of these ap-
plications do not allow the user to specify models outside of a predefined model space, which can be quite narrow.
Even when adding new models is possible, it is usually a challenging task requiring not only good programming
skills but also detailed knowledge of the software design and implementation.

Statistical phylogeneticists recognize the benefits of software that supports the addition of new models and in-
ference methods. For example, the design of BEAST 2 (Bouckaert et al., 2014) allows users to create and use
custom modules. RevBayes (Höhna et al., 2016) goes even further: it uses a domain-specific probabilistic pro-
gramming language for phylogenetics based on probabilistic graphical models (e.g., Koller and Friedman, 2009).
However, the language is not Turing-complete, which means it has some limitations. For example it does not
allow unbounded recursion.

In this paper we concentrate on birth-death models of evolution, an important family of phylogenetic models. In
these models, births correspond to lineage splits (speciation events) and deaths to extinction events. These models
specify probability distributions of evolutionary trees and the task is to infer model parameters given a part of a
complete tree that represents evolution of currently living species.

We take a step toward using PPLs in statistical phylogenetics: our main contribution is a new general inference
algorithm based on an extension of the alive particle filter (APF) (Del Moral et al., 2015) combined with automatic
Rao-Blackwellization via delayed sampling (Murray et al., 2018). We also show how to implement birth-death
models of evolution in existing PPLs, and show the usefulness of our inference algorithm for such models. Inter-
estingly, by using this algorithm we avoid sampling of birth and death rates. We believe that the algorithm may
be of interest for other models with highly-informative observations. Finally, we prove that the estimator of the
marginal likelihood in the extended APF is unbiased.

The rest of the paper is organized as follows: in Section 2 we give a brief recapitulation of basic concepts in
evolution and introduce probabilistic programming in more detail. We derive our inference algorithm and show
how phylogenetic birth-death algorithms can be implemented in PPLs in Section 3. We give implementations
of two well-known phylogenetic birth-death models and compare several general inference algorithms for these
models in Section 4. We offer some conclusions and ideas for future research in Section 5.

2 Background

2.1 Speciation, extinction and phylogenies

There are two types of events that play a significant role in the evolution of any species.

• Speciation occurs when the population of one species splits and eventually forms two new species.

• Extinction occurs when the whole population of one species dies out. Species that are not extinct, i.e.,
species with individuals alive at the present time, are called extant.

In phylogenetics, the before present (BP) time is usually used for dating, i.e., if an event happened at time τ it
means it happened τ time units ago.

The result of an evolutionary process is a binary tree called the complete phylogeny. A very simple example of a
complete phylogeny is depicted in Figure 1a. The nodes represent events and species at significant times:

• the root node represents the most recent common ancestor (MRCA) of all species of interest,

• an internal node represents a speciation event,

• a leaf at τ = 0 (i.e. the present time) represents an extant species,

• a leaf at τ > 0 (i.e. in the past) represents an extinction event.
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Figure 1: Complete (on the left) vs. reconstructed (on the right) tree. The reconstructed tree shows only the
evolution of the extant species.

The length of edges—or branches as they are called in phylogenetics—is the difference between the time of the
parent and the child node.

The reconstructed phylogeny is obtained from a complete tree by removing all subtrees that involve only extinct
species. We will refer to this as pruning. An example of a reconstructed tree is depicted in Figure 1b.

The reconstructed phylogeny represents the evolution of the extant species and only contains information that can
be observed directly (the extant species) or reconstructed by statistical analysis of the DNA sequences of extant
species (the topology of the tree and the times of the speciation events).

2.2 Probabilistic programming

The development of new probabilistic models and inference algorithms is a time-consuming and possibly error-
prone process that usually requires skilled experts in probability, statistics and computer science. Probabilistic
programming is a relatively new approach to solve this problem: generative models are expressed as computer
programs in probabilistic programming languages (PPLs) with support for random variables and operations on
them. Integral to PPLs are general inference engines that perform the inference in such programs. These engines
estimate the distribution of all latent random variables conditioned on the observed data and use it to answer the
queries of interest.

PPLs allow us to define and initialize random variables with a given distribution, for example:

x ∼ Normal(0, 1)

The program may use random variables as though any ordinary variable, and control the flow of the execution as
shown in the following example:

if x > 0.5 then
y ∼ Normal(x, 1)

else
y ∼ Exponential(1)

end if

Depending on the PPL, conditioning on the observed data might be specified explicitly or implicitly. The former
means that conditioning on the observed data is a part of the program, for example:

x ∼ Normal(0, 1)
observe 0.892 ∼ Normal(x, 1)

The latter implies that observed values of random variables are not part of the program, but instead specified at
run time (e.g. as arguments).
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The main general inference methods used in PPLs are adaptations of various inference algorithms for the universal
setting described below, including Markov chain Monte Carlo (MCMC) (Metropolis et al., 1953; Hastings, 1970),
sequential Monte Carlo (SMC) (Gordon et al., 1993; Del Moral et al., 2006), and Hamiltonian Monte Carlo (HMC)
(Neal, 2011).

There already exist quite a few PPLs today based on different programming paradigms, for example functional
PPLs like Anglican (Tolpin et al., 2016) and Venture (Mansinghka et al., 2014); imperative Probabilistic C (Paige
and Wood, 2014), Turing (Ge et al., 2018), Stan (Carpenter et al., 2017), Edward (Tran et al., 2016) and Pyro
(Bingham et al., 2019); and object-oriented Birch (Murray and Schön, 2018).

2.3 Programmatic model and SMC

The execution of a probabilistic program can be modeled using a programmatic model (Murray and Schön, 2018).
Let {Vi}i denote a countable set of all random variables, both latent and observed, in a probabilistic program. This
set might be infinite due to loops and recursion. During execution, whenever a random variable Vi is encountered,
its realization vi is drawn from a distribution associated with it.

Multiple executions of the program might in general encounter different subsets of the random variables (e.g., due
to using random variables in conditional expressions) and encounter them in a different order (with the exception
of the first one). For each random variable Vj not encountered during the execution we set vj = ⊥ (the symbol
⊥ represents an undefined value). We will however assume that any execution encounters all observed random
variables and that these observations are encountered in the same order.

Let σ denote a sequence of indices into {Vi} specifying the order in which the random variables are encountered
during an execution of the program, and let |σ| denote the length of this sequence. Also, let {vi}i∈σ denote
the realizations of the random variables indexed by σ, i.e., vσ[1], . . . , vσ[|σ|]. In a similar manner, we will use
{Vi = vi}i∈σ to denote Vσ[1] = vσ[1], . . . , Vσ[|σ|] = vσ[|σ|].

The index of the k-th encountered variable is given by a deterministic function Ne (for next) of the realizations of
the previously encountered random variables, so that

σ[k] = Ne({vi}i∈σ[1:k−1]),

where σ[1:k−1] denotes the indices of the first k − 1 encountered random variables. The function Ne is uniquely
defined by the probabilistic program. If there are no more random variables to encounter, Ne returns ⊥.

The k-th encountered random variable, Vσ[k], is sampled from

Vσ[k] ∼ pσ[k](·|Pa({vi}i∈σ[1:k−1])),

where pσ[k] is the distribution specified by the program, Pa (for parents) is a deterministic function returning the
parameters of this distribution, and again, it is a function of the realizations of the previously encountered random
variables.

The joint distribution function encoded by the program can be given recursively (starting with σ = []):

p({vi}i 6∈σ|σ, {Vj = vj}j∈σ) =


p({vi}i6∈σ′ |σ′, {Vj = vj}j∈σ′)× pκ(vκ|Pa({vj}j∈σ)) if κ 6= ⊥,

1 if κ = ⊥ ∧ ∀i 6∈ σ : vi = ⊥,

0 otherwise,

where κ = Ne({vi}i∈σ) and σ′ is obtained from σ by appending κ. The first case is the conditional probability
chain rule, the remaining cases cover the situation where there are no more random variables to encounter.

We wish to sample from the posterior distribution p({vi}i 6∈γ |Vγ[1] = y1, . . . , Vγ[T ] = yT ), where T denotes the
number of observations, yt denotes the t-th observation and γ denotes the sequence of indices of the observed
random variables in {Vi}. The sequential nature of the joint distribution allows us to employ Sequential Monte
Carlo methods (Del Moral et al., 2006) to sample from this posterior distribution, including the bootstrap particle
filter (BPF) summarized in Algorithm 1. For the sake of brevity we have assumed that the last observation is also
the last encountered random variable. In the pseudocode, Cat() denotes the categorical distribution with the given
event probabilities. Variables denoted by v are associative arrays (also known as maps or dictionaries) used to
store the realizations of random variables (v[i] denotes the realization of Vi). The PROPAGATE function runs the
program until it encounters an observation.
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Algorithm 1 Bootstrap particle filter (BPF).

for n = 1 to N do . Initialize
v

(n)
0 ← ∅; w(n)

0 ← 1
end for
for t = 1 to T do

for n = 1 to N do
a ∼ Cat({w(m)

t−1/
∑N
l=1 w

(l)
t−1}Nm=1) . Resample

v
(n)
t ← PROPAGATE(v

(a)
t−1) . Propagate

w
(n)
t ← pγ[t](yt|Pa(v

(n)
t )) . Weigh

v
(n)
t [γ[t]]← yt

end for
end for

function PROPAGATE(v) . Run until next observe
κ← Ne(v)
while κ 6∈ γ do
v[κ] ∼ pκ(·|Pa(v))
κ← Ne(v)

end while
return v

end function

Samples from the joint distribution and the corresponding weights can be used to estimate the expected value of a
test function h of interest:

Ê[h] =

∑
n w

(n)
T h

(
v

(n)
T

)
∑
n w

(n)
T

,

as well as to estimate the marginal likelihood p(y1:T ):

Ẑ =
T∏
t=1

1

N

N∑
n=1

w
(n)
t .

3 Methods

3.1 Extended alive particle filter

In the bootstrap particle filter, each particle is propagated by simulating the prior, and may make random choices
that lead to a state with zero weight. In phylogenetic birth-death models this happens quite often: when simulating
the evolution of subtrees that must ultimately become extinct, if any species happen to survive to the present time,
the particle is assigned zero weight. In extreme cases, all particles have zero weight, and the BPF degenerates.

Del Moral et al. (2015) considered this problem in a setting with indicator potentials (such as in approximate
Bayesian computation), i.e. all weights being either zero or one. They proposed a modification of the BPF, where
the resampling and propagation steps are repeated for particles that have weight zero until all particles have weight
one. Details of the resulting alive particle filter (APF) as well as proofs of some of its theoretical properties can
be found in Del Moral et al. (2015).

Although the original APF was designed specifically for indicator potentials, we have extended the algorithm to
work with importance weights, see Algorithm 2 (the PROPAGATE function is the same as in Algorithm 1). The
APF requires N + 1 particles rather than N in order to estimate the marginal likelihood without bias.

At the t-th observe statement, if the weight of a particle is zero, the resampling and propagation steps are repeated.
This procedure is repeated until the weights of all N + 1 particles are positive. The APF counts the total number
of propagations Pt for each observation. The algorithm never uses the states or weights of the N + 1-th particle,
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Algorithm 2 Alive particle filter (APF).

for n = 1 to N do . Initialize
v

(n)
0 ← ∅; w(n)

0 ← 1
end for
for t = 1 to T do
Pt ← 0
for n = 1 to N + 1 do

repeat . Resample
a ∼ Cat({w(m)

t−1/
∑N
l=1 w

(l)
t−1}Nm=1)

v
(n)
t ← PROPAGATE(v

(a)
t−1) . Propagate

Pt ← Pt + 1
w

(n)
t ← pγ[t](yt|Pa(v

(n)
t )) . Weigh

until w(n)
t > 0

v
(n)
t [γ[t]]← yt

end for
end for

but propagations made using this particle are included in Pt, and used to calculate the unbiased estimate of the
marginal likelihood p(y1:T ):

Ẑ =
T∏
t=1

∑N
n=1 w

(n)
t

Pt − 1
.

The proof of unbiasedness can be found in Appendix A in the supplementary material.

Unbiasedness of the marginal likelihood estimate opens for the possibility to use the APF within particle Markov
chain Monte Carlo methods.

3.2 Birth-death models as probabilistic programs

Phylogentic birth-death models constitute a family of models where speciation (birth) events and extinction (death)
events occur along the branches of a phylogenetic tree. Typically, the waiting times between events are exponen-
tially distributed. In general, the rates of these exponential distributions do not remain constant but rather change
continuously, discontinuously, or both. Some models assume that these rates further depend on a state variable
that itself evolves discontinuously along the tree; in some cases the value of this state variable is given for the
extant species.

The constant-rate birth death (CRBD) model (Kendall, 1948) is the simplest birth-death model, where the speci-
ation rate λ and extinction rate µ remain constant over time. Pseudocode for generating phylogenetic trees using
the CRBD model can be found in Appendix B in the supplementary material.

Phylogenetic trees are unordered (i.e. there is no specific ordering of the children of each internal node) and usually
include the labels for the extant species. To derive the likelihood of a complete labeled phylogenetic tree T , let
us first assume that the tree is ordered and unlabeled. Let Tr denote the subtree rooted at the node r, and Ch(r)
denote the children of this node. The likelihood of the subtree Tr can be expressed recursively (we have dropped
conditioning on λ and µ in the notation for brevity):

p(Tr) =



∏
c∈Ch(r)

p(Tc) if r is the root node,

λe−(λ+µ)∆r
∏

c∈Ch(r)

p(Tc) if r is a speciation,

µe−(λ+µ)∆r if r is an extinction,

e−(λ+µ)∆r if r is an extant species,

where ∆r is the length of the branch between the node r and its parent. If r is a speciation event, no extinction
occurs along the branch (factor e−µ∆r ) and the speciation happens after a waiting time ∆r (factor λ exp−λ∆r ).
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If r is an extinction event, no speciation occurs along the branch (factor e−λ∆r ) and the extinction occurs after
waiting time ∆r (factor µe−µ∆r ). Finally, if r is an extant species, neither extinction nor speciation occurs along
the branch.

The likelihood of the complete, unordered and labeled phylogeny T is given by

p(T ) =
2S+1

C!
p(Troot),

where S is the number of speciation events (excluding the root) and C is the number of extant species. The factor
2S+1 represents the number of all possible orderings of the tree and there are C! permutations of the labels of the
extant species. The likelihood can be conveniently written as

p(T ) =
2S+1

C!
λSµXe−(λ+µ)L,

where we have introduced L to denote the sum of all branch lengths and X to denote the number of extinction
events. The likelihood in other birth-death models that admit varying rates and/or include the state can be derived
in a similar way.

The task of interest is to infer model parameters given a reconstructed tree. Recall that this tree is a part of the
complete tree corresponding to the extant species and their ancestors. A naive approach to inference is to simulate
trees from the generative model, prune back the extinct subtrees, and reject those for which the pruned tree does
not equal the observed tree. Such an approach always results in rejection.

Instead, we turn the problem upside down: starting with the observed tree and augmenting it with unobserved
information to obtain a complete tree. Recalling Figure 1, the observed tree is traversed in depth-first order. Along
each branch, the generative model is used to simulate:

• changes to the state (in models with state),

• changes to the speciation and extinction rates,

• hidden speciation events.

For each of the hidden speciation events, the model simulates the evolution of the new species (i.e. a hidden
subtree). If any portion of a hidden subtree survives to the present time, the weight is set to zero. If not, the current
weight is doubled, since there are two possible orderings of the children created by a hidden speciation event on
an observed branch.

If the examined branch ends with a speciation event, the algorithm observes 0 ∼ Exponential(λ). Finally, as
there were no extinction events along the processed branch, the algorithm observes 0 ∼ Poisson(µ∆). In models
with state, if the branch ends at τ = 0 (i.e. the present time) we also condition on the simulated state being equal
to the observed state. We trigger resampling at the end of each branch.

Let us return to the CRBD model in light of the discussion above. The likelihood of a proposed complete tree T ′
that is compatible with the observation (i.e. without any extant species in the hidden subtrees) is given by

q(T ′) = λH
′
e−λLobs × 2S

′
λS

′
µX

′
e−(λ+µ)L′

,

where H ′ denotes the number of all simulated hidden speciation events along the observed tree, Lobs the sum
of the branch lengths in the observed tree, S′ the number of speciation events in all hidden subtrees, X ′ the
number of extinction events and finally L′ denotes the sum of the branch lengths in the hidden subtrees. The
factor λH

′
e−λLobs is related to the hidden speciation events, and the rest is the combined likelihood of all hidden

subtrees.

The weight of the proposal T ′ is given by

w(T ′) =
2Sobs+1

C!
× 2H

′
× λSobs × e−µLobs ,

where Sobs is the number of observed speciation events. The factor 2Sobs+1/C!, related to the number of pos-
sible orderings and the number of labeling permutations, is used as the initial weight of each proposal. The
factor 2H

′
corresponds to doubling the weight for each hidden subtree, the factor λSobs is due to observing 0 ∼
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Exponential(λ) at all observed speciations, and finally the factor e−µLobs is due to observing 0 ∼ Poisson(µ∆)
for all observed branches.

Multiplying the likelihood q(T ′) and the weight w(T ′) of the proposal and summing the event numbers and the
branch lengths we get

q(T ′)w(T ′) = p(T ′).

The factor 2Sobs+1/C! in w(T ′) is constant for all proposals and we will omit it from the weight in the algorithms
and experiments.

3.3 Delayed sampling of the rates

In a Bayesian setting, the parameters are associated with a prior distribution. Using the gamma distribution
(or the exponential distribution as its special case) as a prior for the rates of speciation, extinction and state
change is mathematically convenient since the gamma distribution is a conjugate prior for both the Poisson and the
exponential likelihood. Instead of sampling these parameters from the prior distribution before running the particle
filter (which we refer to as immediate sampling), we can exploit the conjugacy, which allows us to marginalize
out the parameters and sample them after running the particle filter. Exploiting the conjugacy in a probabilistic
program can be automated by an algorithm known as delayed sampling (Murray et al., 2018).

Consider the following prior:

ν ∼ Gamma(k, θ),

with k ∈ N. When the program needs to make a draw from a Poisson distribution

n ∼ Poisson(ν∆),

it can instead make a draw from the marginalized distribution:

n ∼ NegativeBinomial

(
k,

1

1 + ∆θ

)
,

where NegativeBinomial(k, p) is the negative binomial distribution counting the number of failures given the
number of successes k and the probability of success p in each trial. The distribution for ν is then updated to the
posterior distribution according to

ν ∼ Gamma

(
k + n,

θ

1 + ∆θ

)
.

Similarly for variables distributed according to the exponential distribution, instead of drawing

∆ ∼ Exponential(ν),

the program makes a draw from the marginalized distribution:

∆ ∼ Lomax

(
1

θ
, k

)
,

where the first parameter denotes the scale and the second the shape of the Lomax distribution, and the distribution
for ν is then updated to

ν ∼ Gamma

(
k + 1,

θ

1 + ∆θ

)
.

Using this strategy there is actually no need to sample the rates at all; all draws involving these rates are replaced
by draws from the negative binomial and the Lomax distributions with a consequent update of the rate distribution.
Details of these conjugacy relationships can be found in Appendix C in the supplementary material.
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Figure 2: The posterior distributions for the speciation and extinction rates for the cetaceans using the CRBD
model.

4 Experiments

We implemented the inference algorithms described above in the probabilistic programming language Birch (Mur-
ray and Schön, 2018) and added support for the conjugacy relationships described in the previous section, so that
Birch can provide automated delayed sampling for these. We also implemented two phylogenetic birth-death
models, described in Sections 4.1 and 4.2 below.

We ran the inference for these models using different combinations of the inference method, the sampling strategy
(immediate or delayed) and different number of particles N . For each combination we executed the program M
times, collected the estimates {Ẑm}Mm=1 of the marginal likelihood and calculated the relative effective sample
size (RESS):

RESS =
1

M

(∑M
m=1 Ẑm

)2

∑M
m=1 Ẑ

2
m

,

as well as the conditional acceptance ratio (CAR) (see Murray et al., 2013 for more detail):

CAR =
1

M

(
2

M∑
i=1

ci − 1

)
,

where ci is the sum of the i smallest elements in {Ẑm}m. We also calculated the sample variance var log Ẑ.

For the experiments with the APF we also compared the total number of propagations with the number of propa-
gations in the BPF by calculating

ρ =

∑M
m=1 Pm
MNT

,

where Pm is the number of all propagations made during the m-th execution and T is the number of branches in
the observation. Note that NT is the number of propagations in the BPF.

4.1 Constant-rate birth death model

Pseudocode for the probabilistic program implementing the constant-rate birth death (CRBD) model is listed as
Algorithm 3. To sample speciation events along a branch we first sample a number of events from a Poisson
distribution and then sample the time of each event from a uniform distribution. The implementation in Birch can
be found in the supplementary material.

We used the phylogeny of cetaceans (Steeman et al., 2009) as the observation. This phylogeny (Figure 5 in
the supplementary material) represents the evolution of whales, dolphins and porpoises and contains 87 extant
species. We used Gamma(1, 1) as the prior for both the speciation and extinction rate. The results of experiments
comparing BPF and APF with immediate or delayed sampling for different number of particles N , and running
M = 200 executions for each combination, are summarized in Table 1 and Figure 3a.

When using delayed sampling, the speciation and extinction rates are never sampled; the rates are instead rep-
resented by gamma distributions with parameters that are updated during the execution. Let k(m)

λ , θ
(m)
λ , k

(m)
µ
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Algorithm 3 CRBD model as a probabilistic program.

Input:
• T – a pre-ordered list of nodes in the observation

• kλ, θλ – the shape and scale of the prior Gamma distribution for λ (kλ ∈ N)

• kµ, θµ – the shape and scale of the prior Gamma distribution for µ (kµ ∈ N)

λ ∼ Gamma(kλ, θλ)
µ ∼ Gamma(kµ, θµ)
for all r ∈ T do

if r is the root then
continue

end if
chs ∼ Poisson(λ∆r)
for i← 1 to chs do
τ ∼ Uniform(τr, τr + ∆r)
if BRANCHSURVIVES(τ ) then

set the weight to 0 and return
end if
double the weight

end for
if r has children then

observe 0 ∼ Exponential(λ)
end if
observe 0 ∼ Poisson(µ∆r)

end for

function BRANCHSURVIVES(τ, λ, µ)
∆ ∼ Exponential(µ)
if ∆ ≥ τ then

return true
end if
cb ∼ Poisson (λ∆)
for i← 1 to cb do
τ ′ ∼ Uniform(τ −∆, τ)
if BRANCHSURVIVES(τ ′, λ, µ) then

return true
end if

end for
return false

end function

and θ(m)
µ denote the final values of these parameters for a particle drawn from all particles in the m-th run with

the probabilities proportional to their final weights. The posterior distributions for λ and µ can be estimated by
mixtures of gamma distributions:

λ ∼ 1∑M
m=1 Ẑm

M∑
m=1

Ẑm Gamma
(
k

(m)
λ , θ

(m)
λ

)
,

µ ∼ 1∑M
m=1 Ẑm

M∑
m=1

Ẑm Gamma
(
k(m)
µ , θ(m)

µ

)
.

Figure 2 depicts the posterior distributions for the speciation and extinction rates estimated using M = 1000 runs
of the APF with N = 4096 particles.
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4.2 Binary-state speciation and extinction model

The binary-state speciation and extinction (BiSSE) model (Maddison et al., 2007) introduces a binary state for
species, denoted by s ∈ {0, 1}. Each state has its own (but constant) speciation and extinction rates, denoted
by λs and µs. The waiting time between switching state is exponentially distributed with rates q01 for switching
from state 0 to state 1, and q10 from state 1 to state 0. In our experiments we made a (common) assumption that
q01 = q10 = ς .

We used the same observation as Rabosky and Goldberg (2015), i.e., we extended the cetacean phylogeny with the
state variable related to the body length of cetaceans obtained from Slater et al. (2010). Data are available for 74
of the 87 extant species. The binary state 0 and 1 refers to the length being below and above the median. Again we
used Gamma(1, 1) as the prior for λ0, λ1, µ0 and µ1, and Gamma(1, 10/820.28) as the prior for ς (the number
in the denominator is the sum of all branch lengths). The initial state at the root is drawn from {0, 1} with equal
probabilities. The results for experiments comparing the BPF and the APF with immediate or delayed sampling
for different number of particles N , and running M = 200 executions for each combination, are summarized in
Table 2 and Figure 3b. When running the experiments using the BPF and immediate sampling, a certain fraction
of the executions degenerated—from 25% of the executions with 1024 particles down to 1.5% of the executions
with 4096 particles. These executions were excluded when calculating var log Ẑ.

Our implementation of the BiSSE model can be found in the supplementary material.

5 Discussion and conclusion

In this paper we introduced a new general inference method for probabilistic programming combining an extended
alive particle filter (APF) with delayed sampling, and proved that the resulting estimate of the marginal likelihood
is unbiased. We showed how phylogenetic birth-death models can be implemented in probabilistic programming
languages, in particular, we considered two models—CRBD and BiSSE and their implementation in the proba-
bilistic programming language Birch. We showed the strength of this inference method for these models compared
to the standard bootstrap particle filter (BPF) (Tables 1 and 2, and Figures 3a and 3b): for the BiSSE model using
8192 particles we increased RESS approximately 29 times, CAR approximately 30 times and lowered var log Ẑ
more than 1150 times at the cost of running 3 times more propagations.

The extended APF is a suitable drop-in replacement for the BPF for black-box probabilistic programs. If a program
produces only positive weights, the APF produces the same result as the BPF at the overhead of just one extra
particle, used to estimate the marginal likelihood. On the other hand, if the program can produce zero weights,
the APF behaves much more reasonably than the BPF: resampling and propagation are repeated until all particles
have positive weight. This may seem equivalent to using the BPF with a higher number of particles (ρ times more
to be precise), but this is not the case: the number of propagations Pt is not the same throughout the execution,
but rather adapted dynamically for each t. This simplifies the tuning of the number of particles for such models.

The learning of rates in birth-death models sits in the context of broader problems in phylogenetics, such as the
learning of trees. Interesting future work would be to consider whether models and methods for learning rates can
be combined with models and methods for learning tree structures for joint inference.
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Figure 4: Graphical model of the state space model.

A Proof of the unbiasedness of the marginal likelihood estimator of the
extended APF

In this section we prove that the marginal likelihood estimator

Ẑ =
T∏
t=1

N∑
n=1

w
(n)
t

Pt − 1
,

produced by the extended alive particle filter (APF) for the state space model (Figure 4)

x0 ∼ p(x0),

xt ∼ ft(xt|xt−1), for t = 1, 2, . . . , T,

yt ∼ gt(yt|xt),

is unbiased in the sense that E[Ẑ] = p(y1:T ).

The structure of our proof is similar to that of Pitt et al. (2012) for the Auxiliary Particle Filter. Let Ft =

{x(n)
t , w

(n)
t }Nn=1 denote the internal state of the particle filter, i.e., the states and weights of all particles, at time t.

Lemma 1.

E

[∑N
n=1 w

(n)
t

Pt − 1

∣∣∣∣∣Ft−1

]
=

N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

p
(
yt

∣∣∣x(n)
t−1

)
.

Proof. In the interest of brevity, we will omit conditioning on Ft−1 in the notation. For each particle, the APF
constructs a candidate sample x′ by drawing a sample from {x(n)

t−1} with the probabilities proportional to the
weights {w(n)

t−1} and propagating it forward to time t such that

x′ ∼
N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

ft

(
x′
∣∣∣x(n)
t−1

)
.

If gt(yt|x′) = 0, the candidate sample is rejected and the procedure is repeated until acceptance (when gt(yt|x′) >
0).

Let At = {x′ : gt(yt|x′) > 0}. The acceptance probability pAt is then given by

pAt =

∫
1At(x

′)
N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

ft

(
x′
∣∣∣x(n)
t−1

)
dx′,

where 1 denotes the indicator function.

The accepted samples are distributed according to the following distribution:

xt ∼
1At(xt)

pAt

N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

ft

(
xt

∣∣∣x(n)
t−1

)
.
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The expected value of the weight wt = gt(yt|xt) of an accepted sample is given by

E[wt] =

∫
gt(yt|xt)

1At(xt)

pAt

N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

ft

(
xt

∣∣∣x(n)
t−1

)
dxt.

The factor 1At(xt) can be omitted since 1At(xt) = 0⇔ gt(yt|xt) = 0, resulting in

E[wt] =

∫
1

pAt

N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

ft

(
xt

∣∣∣x(n)
t−1

)
gt(yt|xt)dxt

=
1

pAt

N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

∫
ft

(
xt

∣∣∣x(n)
t−1

)
gt(yt|xt)dxt

=
1

pAt

N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

p
(
yt

∣∣∣x(n)
t−1

)
.

The APF repeats drawing new samples until N + 1 samples have been accepted. The total number of draws
of candidate samples at time t, Pt, is itself a random variable distributed according to the negative binomial
distribution

P (Pt = D) =

(
D − 1

(N + 1)− 1

)
pN+1
At

(1− pAt)D−(N+1)

with the support D ∈ {N + 1, N + 2, N + 3, . . . }.

Finally, using the fact that E[wt] does not depend on the value of Pt,

E

[∑N
n=1 w

(n)
t

Pt − 1

]
=

∞∑
D=N+1

NE[wt]

D − 1
P (Pt = D) =

∞∑
D=N+1

NE[wt]

D − 1

(
D − 1

N

)
pN+1
At

(1− pAt)D−(N+1)

= NE[wt]
∞∑

D=N+1

1

D − 1

(
D − 1

N

)
pN+1
At

(1− pAt)D−(N+1)

= NE[wt]
∞∑

D=N+1

1

D − 1

(D − 1)(D − 2)!

N(N − 1)!(D − (N + 1))!
pN+1
At

(1− pAt)D−(N+1)

= E[wt]p
N+1
At

∞∑
D=N+1

(
D − 2

D − (N + 1)

)
(1− pAt)D−(N+1)

(using the binomial theorem)

= E[wt]p
N+1
At

p−NAt =
1

pAt

N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

p
(
yt

∣∣∣x(n)
t−1

)
pAt

=
N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

p
(
yt

∣∣∣x(n)
t−1

)
.

Lemma 2.

E

∑N
n=1 w

(n)
t p

(
yt+1:t′

∣∣∣x(n)
t

)
Pt − 1

∣∣∣∣∣∣Ft−1

 =
N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

p
(
yt:t′

∣∣∣x(n)
t−1

)
.
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Proof. Similar to the proof of Lemma 1 we have that

E[wtp(yt+1:t′ |xt)] =

∫
1

pAt

N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

ft

(
xt

∣∣∣x(n)
t−1

)
gt(yt|xt)p(yt+1:t′ |xt)dxt

=
1

pAt

N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

∫
ft

(
xt

∣∣∣x(n)
t−1

)
gt(yt|xt)p(yt+1:t′ |xt)dxt

=
1

pAt

N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

p
(
yt:t′

∣∣∣x(n)
t−1

)
and using this result we have that

E

∑N
n=1 w

(n)
t p

(
yt+1:t′

∣∣∣x(n)
t

)
Pt − 1

 =
∞∑

D=N+1

NE[wtp(yt+1:t′ |xt)]
D − 1

(
D − 1

N

)
pN+1
At

(1− pAt)D−(N+1)

= NE[wtp(yt+1:t′ |xt)]
∞∑

D=N+1

1

D − 1

(
D − 1

N

)
pN+1
At

(1− pAt)D−(N+1)

= NE[wtp(yt+1:t′ |xt)]
pAt
N

= N
1

pAt

N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

p
(
yt:t′

∣∣∣x(n)
t−1

) pAt
N

=
N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

p
(
yt:t′

∣∣∣x(n)
t−1

)
.

Lemma 3.

E

[
t∏

t′=t−h

∑N
n=1 w

(n)
t′

Pt′ − 1

∣∣∣∣∣Ft−h−1

]
=

N∑
n=1

w
(n)
t−h−1∑N

m=1 w
(m)
t−h−1

p
(
yt−h:t

∣∣∣x(n)
t−h−1

)
.

Proof. By induction.

The base step for h = 0 was proved in Lemma 1.

In the induction step, let us assume that the equality holds for h and prove it for h+ 1:

E

[
t∏

t′=t−h−1

∑N
n=1 w

(n)
t′

P ′t − 1

∣∣∣∣∣Ft−h−2

]
= E

[
E

[
t∏

t′=t−h

∑N
n=1 w

(n)
t′

P ′t − 1

∣∣∣∣∣Ft−h−1

] ∑N
n=1 w

(n)
t−h−1

Pt−h−1 − 1

∣∣∣∣∣Ft−h−2

]
(using the induction assumption)

= E

[
N∑
n=1

w
(n)
t−h−1∑N

m=1 w
(m)
t−h−1

p
(
yt−h:t

∣∣∣x(n)
t−h−1

) ∑N
n=1 w

(n)
t−h−1

Pt−h−1 − 1

∣∣∣∣∣Ft−h−2

]

= E

[
N∑
n=1

w
(n)
t−h−1

Pt−h−1 − 1
p
(
yt−h:t

∣∣∣x(n)
t−h−1

)∣∣∣∣∣Ft−h−2

]
(using Lemma 2)

=
N∑
n=1

w
(n)
t−h−2∑N

m=1 w
(m)
t−h−2

p
(
yt−h−1:t

∣∣∣x(n)
t−h−2

)
.

Theorem 1.

E

 T∏
t=1

N∑
n=1

w
(n)
t

Pt − 1

 = p(y1:T ).
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Proof. Using Lemma 3 with t = T, h = T − 1 and

E

[
1

N

N∑
n=1

p
(
y1:T

∣∣∣x(n)
0

)]
= p(y1:T ).

B Generative model for CRBD

The pseudocode for generating phylogenetic trees using the CRBD model is listed in Algorithm 4.

Algorithm 4 Pseudocode for generating trees using the CRBD model.

function CRBD(τorig)
return (τorig, {CRBD’(τorig)})

end function

function CRBD’(τ )
∆ ∼ Exponential(λ+ µ)
τ ′ ← τ −∆
if τ ′ < 0 then

return (0, ∅)
end if
e ∼ Cat

(
p1 = λ

λ+µ , p2 = µ
λ+µ

)
if e = 1 then

return (τ ′, {CRBD’(τ ′), CRBD’(τ ′)})
else

return (τ ′, ∅)
end if

end function

C Relevant conjugacy relationships

C.1 Negative binomial and Lomax distribution

Negative binomial distribution

Parameters: number of successes k > 0 before the experiment is stopped, probability of success p ∈ (0, 1)

Probability mass function:

f(r|k, p) =

(
r + k − 1

k − 1

)
pk(1− p)r for r ∈ N ∪ {0},

where r is the number of failures.

Lomax distribution

Parameters: scale λ > 0, shape α > 0

Probability density function:

f(∆|λ, α) =
α

λ

(
1 +

∆

λ

)−(α+1)

for ∆ ≥ 0
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C.2 Conjugacy relationships

Gamma-Poisson mixture

Prior distribution: ν ∼ Gamma(k, θ) with the probability density function

f(ν|k, θ) =
1

Γ(k)θk
νk−1e−ν/θ for ν > 0

Likelihood: n ∼ Poisson(ν∆) with the probability mass function

f(n|λ) =
λn

n!
e−λ for n ∈ N ∪ {0},

where λ = ν∆.

Prior predictive distribution (k ∈ N):

f(n|k, θ) =

∫ ∞
0

1

Γ(k)θk
νk−1e−ν/θ × (ν∆)n

n!
e−ν∆dν =

∆n

n!(k − 1)!θk

∫ ∞
0

νn+k−1e−ν(1/θ+∆)dν

=
∆n

n!(k − 1)!θk

(
1

θ
+ ∆

)−(n+k)

(n+ k − 1)! =

(
n+ k − 1

k − 1

)(
1

1 + ∆θ

)k (
1− 1

1 + ∆θ

)n
n|k, θ ∼ NegativeBinomial

(
k,

1

1 + ∆θ

)
Posterior distribution:

f(ν|n) ∝ 1

Γ(k)θk
νk−1e−ν/θ × (ν∆)n

n!
e−ν∆ ∝ νk+n−1e−ν(1/θ+∆) = ν(k+n)−1e−ν/(

θ
1+∆θ )

ν|n ∼ Gamma

(
k + n,

θ

1 + ∆θ

)

Gamma-exponential mixture

Prior distribution: ν ∼ Gamma(k, θ)

Likelihood: ∆ ∼ Exponential(ν) with the probability density function

f(∆|ν) = νe−ν∆ for ∆ ≥ 0

Prior predictive distribution:

f(∆|k, θ) =

∫ ∞
0

1

Γ(k)θk
νk−1e−ν/θ × νe−ν∆dν =

1

Γ(k)θk

∫ ∞
0

νke−ν(1/θ+∆)dν

=
1

Γ(k)θk

(
1

θ
+ ∆

)−(k+1)

Γ(k + 1) =
k

θk

(
1

θ
+ ∆

)−(k+1)

= kθ(1 + ∆θ)−(k+1)

∆|k, θ ∼ Lomax

(
1

θ
, k

)
Posterior distribution:

f(ν|∆) ∝ 1

Γ(k)θk
νk−1e−ν/θ × νe−ν∆ ∝ νke−ν(1/θ+∆) = ν(k+1)−1e−ν/(

θ
1+∆θ )

ν|∆ ∼ Gamma

(
k + 1,

θ

1 + ∆θ

)

D Source code

Birch is available at
https://birch-lang.org/

The source code for the CRBD and BiSSE models is available at
https://github.com/kudlicka/paper-2019-probabilistic
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4.0
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Cephalorhynchus commersonii

Balaenoptera brydei

Caperea marginata

Balaenoptera musculus

Neophocaena phocaenoides

Mesoplodon europaeus

Balaenoptera edeni

Stenella frontalis

Pontoporia blainvillei

Lissodelphis peronii

Lagenodelphis hosei

Phocoenoides dalli

Phocoena spinipinnis

Eubalaena japonica

Mesoplodon layardii
Mesoplodon hectori

Pseudorca crassidens

Hyperoodon planifrons

Mesoplodon perrini

Stenella longirostris

Globicephala melas
Lagenorhynchus albirostris

Feresa attenuata

Indopacetus pacificus

Lagenorhynchus cruciger

Sotalia fluviatilis

Platanista gangetica

Delphinus capensis

Balaena mysticetus

Sotalia guianensis

Mesoplodon grayi

Steno bredanensis

Mesoplodon densirostris

Berardius bairdii

Lipotes vexillifer

Delphinus tropicalis

Lagenorhynchus acutus

Cephalorhynchus eutropia

Figure 5: Phylogeny of cetaceans (whales, dolphins and porpoises).
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Abstract

We introduce a dynamic mechanism for the
solution of analytically-tractable substructure
in probabilistic programs, using conjugate pri-
ors and affine transformations to reduce vari-
ance in Monte Carlo estimators. For inference
with Sequential Monte Carlo, this automat-
ically yields improvements such as locally-
optimal proposals and Rao–Blackwellization.
The mechanism maintains a directed graph
alongside the running program that evolves
dynamically as operations are triggered upon
it. Nodes of the graph represent random vari-
ables, edges the analytically-tractable rela-
tionships between them. Random variables
remain in the graph for as long as possible,
to be sampled only when they are used by
the program in a way that cannot be resolved
analytically. In the meantime, they are con-
ditioned on as many observations as possi-
ble. We demonstrate the mechanism with a
few pedagogical examples, as well as a linear-
nonlinear state-space model with simulated
data, and an epidemiological model with real
data of a dengue outbreak in Micronesia. In
all cases one or more variables are automati-
cally marginalized out to significantly reduce
variance in estimates of the marginal likeli-
hood, in the final case facilitating a random-
weight or pseudo-marginal-type importance
sampler for parameter estimation. We have
implemented the approach in Anglican and
a new probabilistic programming language
called Birch.

Proceedings of the 21st International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2018, Lanzarote,
Spain. PMLR: Volume 84. Copyright 2018 by the author(s).

1 INTRODUCTION

Probabilistic programs extend graphical models with
support for stochastic branches, in the form of condi-
tionals, loops, and recursion. Because they are highly
expressive, they pose a challenge in the design of ap-
propriate inference algorithms. This work focuses on
Sequential Monte Carlo (SMC) inference algorithms [4],
extending an arc of research that includes probabilistic
programming languages (PPLs) such as Venture [14],
Anglican [26], Probabilistic C [18], WebPPL [8], Fi-
garo [20], and Turing [7], as well as similarly-motivated
software such as LibBi [16] and BiiPS [25].

The simplest SMC method, the bootstrap particle fil-
ter [9], requires only simulation—not pointwise evalu-
ation—of the prior distribution. While widely appli-
cable, it may be suboptimal with respect to Monte
Carlo variance in situations where, in fact, pointwise
evaluation is possible, so that other options are viable.
One way of reducing Monte Carlo variance is to ex-
ploit analytical relationships between random variables,
such as conjugate priors and affine transformations.
Within SMC, this translates to improvements such as
the locally-optimal proposal, variable elimination, and
Rao–Blackwellization (see [5] for an overview). The
present work seeks to automate such improvements for
the user of a PPL.

Typically, a probabilistic program must be run in order
to discover the relationships between random variables.
Because of stochastic branches, different runs may dis-
cover different relationships, or even different random
variables. While an equivalent graphical model might
be constructed for any single run, it would constitute
only partial observation. It may take many runs to
observe the full model, if this is possible in finite time
at all. We therefore seek a runtime mechanism for the
solution of analytically-tractable substructure, rather
than a compile-time mechanism of static analysis.
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A general-purpose programming language can be aug-
mented with some additional constructs, called check-
points, to produce a PPL (see e.g. [26]). Two check-
points are usual, denoted sample and observe. The
first suggests that a value for a random variable needs
to be sampled, the second that a value for a random
variable is given and needs to be conditioned upon. At
these checkpoints, random behavior may occur in the
otherwise-deterministic execution of the program, and
intervention may be required by an inference algorithm
to produce a correct result.

The simplest inference algorithm instantiates a random
variable when first encountered at a sample checkpoint,
and updates a weight with the likelihood of a given
value at an observe checkpoint. This produces samples
from the prior distribution, weighted by their likeli-
hood under the observations. It corresponds to impor-
tance sampling with the posterior as the target and
the prior as the proposal. A more sophisticated infer-
ence algorithm runs multiple instances of the program
simultaneously, pausing after each observe checkpoint
to resample amongst executions. This corresponds to
the bootstrap particle filter (see e.g. [26]).

These are forward methods, in the sense that check-
points are executed in the order encountered, and sam-
pling is myopic of future observations. The present
work introduces a mechanism to change the order in
which checkpoints are executed so that sampling can be
informed by future observations, exploiting analytical
relationships between random variables. This facili-
tates more sophisticated forward-backward methods,
in the sense that information from future observations
can be propagated backward through the program.

We refer to this new mechanism as delayed sampling.
When a sample checkpoint is reached, its execution is
delayed. Instead, a new node representing the random
variable is inserted into a graph that is maintained
alongside the running program. This graph resembles
a directed graphical model of those random variables
encountered so far that are involved in analytically-
tractable relationships. Each node of the graph is
marginalized and conditioned by analytical means for
as long as possible until, eventually, it must be instanti-
ated for the program to continue execution. This occurs
when the random variable is passed as an argument
to a function for which no analytical overload is pro-
vided. It is at this last possible moment that sampling
is executed and the random variable instantiated.

Operations on the graph are forward-backward. The
forward pass is a filter, marginalizing each latent vari-
able over its parents and conditioning on observations,
in all cases analytically. The backward pass produces
a joint sample. This has some similarity to belief prop-

agation [19], but the backward passes differ: belief
propagation typically obtains the marginal posterior
distribution of each variable, not a joint sample. Fur-
thermore, in delayed sampling the graph evolves dy-
namically as the program executes, and at any time
represents only a fraction of the full model. This means
that some heuristic decisions must be made without
complete knowledge of the model structure.

For SMC, delayed sampling yields locally-optimal pro-
posals, variable elimination, and Rao–Blackwellization,
with some limitations, to be detailed later. At worst,
it provides no benefit. There is little intrusion of the
inference algorithm into modeling code, and possibly
no intrusion with appropriate language support. This
is important, as we consider the user experience and
ergonomics of a PPL to be of primary importance.

Related work has considered analytical solutions to
probabilistic programs. Where a full analytical solution
is possible, it can be achieved via symbolic manipula-
tions in Hakaru [23]. Where not, partial solutions using
compile-time program transformations are considered
in [17] to improve the acceptance rate of Metropo-
lis–Hastings algorithms. This compile-time approach
requires careful treatment of stochastic branches, and
even then it may not be possible to propagate analyti-
cal solutions through them. Delayed sampling instead
operates dynamically, at runtime. It handles stochastic
branches without problems, but may introduce some
additional execution overhead.

The paper is organized as follows. Section 2 introduces
the delayed sampling mechanism. Section 3 provides
a set of pedagogical examples and two empirical case
studies. Section 4 discusses some limitations and future
work. Supplementary material includes further details
of the case studies and implementations.

2 METHODS

As a probabilistic program runs, its memory state
evolves dynamically and stochastically over time, and
can be considered a stochastic process. Let t = 1, 2, . . .
index a sequence of checkpoints. These checkpoints
may differ across program runs (this is one of the
challenges of inference for probabilistic programs, see
e.g. [27]). In contrast to the two-checkpoint sample-
observe formulation, we define three checkpoint types:

• assume(X, p(·)) to initialize a random variable X
with prior distribution p(·),

• observe(x, p(·)) to condition on a random variable
X with likelihood p(·) having some value x,

• value(X) to realize a value for a random variable
X previously encountered at an assume checkpoint.
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We use the statistics convention that an uppercase
character (e.g. X) denotes a random variable, while
the corresponding lowercase character (e.g. x) denotes
an instantiation of it.

An assume checkpoint does not result in a random
variable being sampled: its sampling is delayed until
later. A value checkpoint occurs the first time that a
random variable, previously encountered by an assume,
is used in such a way that its value is required. At this
point it cannot be delayed any longer, and is sampled.

Denote the state of the running program at checkpoint
t by Xt ∈ Xt. This can be interpreted as the current
memory state of the program. Randomness is exoge-
nous and represented by the random process Ut ∈ Ut.
This may be, for example, random entropy, a pseu-
dorandom number sequence, or uniformly distributed
quasirandom numbers.

The program is a sequence of functions ft that each
maps a starting state Xt−1 = xt−1 and random in-
put Ut = ut to an end state Xt = xt, so that
xt = ft(xt−1, ut). Note that ft is a deterministic func-
tion given its arguments. It is not permitted that ft
has any intrinsic randomness, only the extrinsic ran-
domness provided by Ut.

The target distribution over Xt is πt(dxt), typically
a Bayesian posterior. In general, the program can-
not sample from this directly. Instead, it samples xt
from some proposal distribution qt(dxt), which in many
cases is just the prior distribution pt(dxt). Then, as-
suming that both πt and qt admit densities, it computes
an associated importance weight wt ∝ πt(xt)/qt(xt).
Assuming Ut is distributed according to ξt(dut), we
have

qt(dxt) =

∫
Xt−1

∫
Ut

δft(xt−1,ut)(dxt)ξt(dut)qt−1(dxt−1),

where δ is the Dirac measure. For brevity, we omit the
subscript t henceforth, and simply update the state for
the next time, as though it is mutable.

2.1 Motivation

We are motivated by variance reduction in Monte Carlo
estimators. Consider some functional ϕ(X) of interest.
We wish to compute expectations of the form:

Eπ[ϕ(X)] =

∫
X
ϕ(x)π(dx) =

∫
X
ϕ(x)

π(x)

q(x)
q(dx).

Self-normalized importance sampling estimates can be
formed by running the programN times and computing
(where superscript n indicates the nth program run):

ϕ̂ :=

N∑
n=1

w̄nϕ(xn), w̄n = wn
/ N∑

n=1

wn.

A classic aim is to reduce mean squared error:

MSE(ϕ̂) = Eq
[
(ϕ̂− Eπ[ϕ(X)])

2
]
.

One technique to do so is Rao–Blackwellization (see e.g.
[21, §4.2]). Assume that, amongst the state X, there is
some variableXv which has been observed to have value
xv, some set of variablesXM which can be marginalized
out analytically, and some other set of variables XR

which have been instantiated previously. The functional
of interest is the incremental likelihood of xv. An
estimator would usually require instantiation of Xn

M ∼
p(dxnM | xnR) for n = 1, . . . , N , and computation of:

Ẑ :=

N∑
n=1

w̄np(xv | xnM , xnR).

The Rao–Blackwellized estimator does not instantiate
XM , but rather marginalizes it out:

ẐRB :=

N∑
n=1

w̄n
∫
p(xv | xnM , xnR)p(dxnM | xnR).

By the law of total variance, var(ẐRB) ≤ var(Ẑ), and
as Ẑ and ẐRB are unbiased [3], MSE(ẐRB) ≤ MSE(Ẑ).

This form of Rao–Blackwellization is local to each check-
point. While XM is marginalized out, it may require
instantiation at future checkpoints, and so it must also
be possible to simulate p(dxM | xv, xR).

2.2 Delayed sampling

Delayed sampling uses analytical relationships to re-
order the execution of checkpoints and reduce variance.
Each observe is executed as early as possible, and the
sampling associated with assume is delayed for as long
as possible, to be informed by observations in between.

Alongside the state X, we maintain a graph G = (V,E).
This is a directed graph consisting of a set of nodes V
and set of edges E ⊂ V ×V , where (u, v) ∈ E indicates
a directed edge from a parent node u to a child node v.
For v ∈ V , let Pa(v) = {u ∈ V | (u, v) ∈ E} denote its
set of parents, and Ch(v) = {u ∈ V | (v, u) ∈ E} its set
of children. Associated with each v ∈ V is a random
variable Xv (part of the state, X) and prior probability
distribution pv(dxv | xPa(v)), now using the subscript
of X to select that part of the state associated with a
single node, or set of nodes. We partition V into three
disjoint sets according to three states. Let

• I ⊆ V be the set of nodes in an initialized state,

• M ⊆ V be the set of nodes in a marginalized state,

• R ⊆ V be the set of nodes in a realized state.
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At some checkpoint, the program would usually have
instantiated all variables in V with a simulated or
observed value, whereas under delayed sampling only
those in R are instantiated, while those in I ∪M are
delayed.

We will restrict the graph G to be a forest of zero or
more disjoint trees, such that each node has at most one
parent. This condition is easily ensured by construction:
the implementation makes anything else impossible, i.e.
only relationships between pairs of random variables
are coded. There are some interesting relationships
that cannot be represented as trees, such as a normal
distribution with conjugate prior over both mean and
variance, or multivariate normal distributions. We deal
with these as special cases, collecting multiple nodes
into single supernodes and implementing relationships
between pairs of supernodes, much like the structure
achieved by the junction tree algorithm [11].

The following invariants are preserved at all times:

1. If a node is in M then its parent is in M. (1)
2. A node has at most one child in M. (2)

These imply that the nodes of M form marginalized
paths: one in each of the disjoint trees of G, from the
root node to a node (possibly itself) in the same tree.
We will refer to the unique such path in each tree as
its M -path. The node at the start of the M -path is a
root node, while the node at the end is referred to as a
terminal node. Terminal nodes have a special place in
the algorithms below, and are denoted by the set T .

By the invariants, each v ∈M \ T has a child u ∈M ;
let Fo(v) denote the entire subtree with this child u as
its root (the forward set). Otherwise let Fo(v) be the
empty set. The graph G then encodes the distribution(∏
v∈I

qv(dxv | xPa(v))

) ∏
v∈M\T

qv(dxv | xR\Fo(v))

×
(∏
v∈T

qv(dxv | xR)

)
, (3)

where qv equals the prior for nodes in I, some updated
distribution for nodes in M , and all nodes in R are
instantiated. The distribution suggests why terminals
(in the set T ) are important: they are the nodes in-
formed by all instantiated random variables up to the
current point in the program, and can be immediately
instantiated themselves. Other nodes in M await infor-
mation to be propagated backward from their forward
set before they, too, can be instantiated.

When the program reaches a checkpoint, it triggers
operations on the graph (details follow):

• For assume(Xv, p(·)), call Initialize(v, p(·)), which
inserts a new node v into the graph.

• For observe(xv, p(·)), call Initialize(v, p(·)), then
Graft(v), which turns v into a terminal node, then
Observe(v), which assigns the observed value to v
and updates its parent by conditioning.

• For value(Xv), call Graft(v), then Sample(v),
which samples a value for v.

Figure 1 provides pseudocode for all operations; Fig-
ure 2 illustrates their combination. Operations are of
two types: local and recursive. Local operations modify
a single node and possibly its parent:

• Initialize(v, p(·)) inserts a new node v into the
graph. If v requires a parent, u (implied by p(·)
having a conditional form, i.e. p(dxv | xu) not
p(dxv)), then v is put in I and the edge (u, v) in-
serted. Otherwise, it is a root node and is put in
M , with no edges inserted.

• Marginalize(v), where v is the child of a termi-
nal node, moves v from I to M and updates its
distribution by marginalizing over its parent.

• Sample(v) or Observe(v), where v is a terminal
node, assigns a value to the associated random
variable by either sampling or observing, moves v
from M to R, and updates the distribution of its
parent node by conditioning. Both Sample(v) and
Observe(v) use an auxiliary function Realize(v)
for their common operations.

As shown in the pseudocode, these local operations have
strict preconditions that limit their use to only a subset
of the nodes of the graph, e.g. only terminal nodes may
be sampled or observed. As long as these preconditions
are satisfied, the invariants (1) and (2) are maintained,
and the graph G encodes the representation (3). This
is straightforward to check.

The recursive operations realign the M -path to estab-
lish the preconditions for any given node, so that local
operations may be applied to it. These have side effects,
in that other nodes may be modified to achieve the
realignment. The key recursive operation is Graft,
which combines local operations to extend the M -path
to a given node, making it a terminal node. Internally,
Graft may call another recursive operation, Prune,
to shorten the existingM -path by realizing one or more
variables.

3 EXAMPLES

We have implemented delayed sampling in Anglican
(see also [13]) and a new PPL called Birch. Details are
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Program Checkpoint Local operations Commentary

x ~ N(0,1); assume(X) Initialize(X)
Named delay_triplet in supplementary material.

y ~ N(x,1); assume(Y ) Initialize(Y )

z ~ N(y,1); observe(z) Initialize(Z)

Marginalize(Y )
No Marginalize(X) is necessary: X, as a root node,
is initialized in the marginalized state.Marginalize(Z)

Observe(z)

print(x); value(X) Sample(Y ) Samples Y ∼ p(dy | z).
Sample(X) Samples X ∼ p(dx | y, z).

print(y); A value Y = y is already known.

x ~ N(0,1); assume(X) Initialize(X)

Named delay_iid in supplementary material. It
encodes multiple i.i.d. observations with a conjugate
prior distribution over their mean.

for (t in 1..T) {

y[t] ~ N(x,1); observe(yt) Initialize(yt)

Marginalize(yt)

Observe(yt)

}

print(x); value(X) Sample(X) Samples X ∼ p(dx | y1, . . . , yT ).
x ~ Bernoulli(p); assume(X) Initialize(X) Named delay_spike_and_slab in supplementary

material. It encodes a spike-and-slab prior [15] often
used in Bayesian linear regression.

if (x) { value(X) Sample(X)

y ~ N(0,1); assume(Y ) Initialize(Y )

} else {

y <- 0; Used as a regular variable, no graph operations are
triggered.

} Y is marginalized or realized as some Y = y by the
end, according to the stochastic branch.

x[1] ~ N(0,1); assume(X1) Initialize(X1) Named delay_kalman in supplementary material. It
encodes a linear-Gaussian state-space model, for
which delayed sampling yields a forward Kalman filter
and backward simulation.

y[1] ~ N(x[1],1); observe(y1) Initialize(y1)

Marginalize(y1)

Observe(y1)

for (t in 2..T) {

After each tth iteration of this loop, the distribution
p(dxt | y1, . . . , yt) is obtained; the behavior
corresponds to a Kalman filter.

x[t] ~ N(a*x[t-1],1); assume(Xt) Initialize(Xt)

y[t] ~ N(x[t],1); observe(yt) Initialize(yt)

Marginalize(Xt)

Marginalize(yt)

Observe(yt)

}

print(x[1]); value(X1) Sample(XT ) Samples XT ∼ p(dxT | y1, . . . , yT ).
. . . Recursively samples Xt ∼ p(dxt | xt+1, y1, . . . , yt)

and computes p(dxt−1 | xt, y1, . . . , yt−1).
Sample(X1) Samples X1 ∼ p(dx1 | x2, y1).

Table 1: Pedagogical examples of delayed sampling applied to four probabilistic programs, showing the programs
themselves (first column), the checkpoints reached as they execute linearly from top to bottom (second column),
the sequence of local operations that these trigger on the graph (third column), and commentary (fourth column).
The programs use a Birch-like syntax. Random variables with given values (from earlier assignment) are annotated
by underlining. The function print is assumed to accept real-valued arguments only, so may trigger a value
checkpoint when used.
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Initialize(v, p(·))
1 if p includes a parent node, u
2 I ← I ∪ {v}
3 E ← E ∪ {(u, v)}
4 qv(dxv)← p(dxv | xu)
5 else
6 M ←M ∪ {v}
7 qv(dxv)← p(dxv)

Marginalize(v)

1 assert v ∈ I and v has a parent u ∈ T
2 qv(dxv)←

∫
Xu
p(dxv | xu)qu(dxu)

3 I ← I \ {v}
4 M ←M ∪ {v}

Sample(v)

1 assert v ∈ T
2 draw xv ∼ qv(dxv)
3 Realize(v)

Observe(v)

1 assert v ∈ T
2 w ← qv(xv)w
3 Realize(v)

Realize(v)

1 assert v ∈ T
2 M ←M \ {v}
3 R← R ∪ {v}
4 if v has a parent u // condition parent
5 qu(dxu)← p(xv|xu)qu(dxu)∫

Xu
p(xv|x′u)qu(dx′u)

6 E ← E \ {(u, v)}
7 foru ∈ Ch(v) // new roots from children
8 Marginalize(u)
9 E ← E \ {(v, u)}

Graft(v)

1 if v ∈M
2 if v has a child u ∈M
3 Prune(u)
4 else
5 Graft(u) where u is the parent of v
6 Marginalize(v)
7 assert v ∈ T

Prune(v)

1 assert v ∈M
2 if v has a child u ∈M
3 Prune(u)
4 Sample(v)

Figure 1: Operations on the graph. The left arrow
(←) denotes assignment. Assigning to a distribution is
interpreted as updating its hyperparameters.

given in Appendices C and D.

Table 1 provides pedagogical examples using a Birch-
like syntax, showing the sequence of checkpoints and
graph operations triggered as some simple programs
execute. They show how delayed sampling behaves
through programming structures such as conditionals
and loops, including stochastic branches.

In addition, we provide two case studies where delayed
sampling improves inference, firstly a linear-nonlinear
state-space model with simulated data, secondly a
vector-borne disease model with real data from an out-
break of dengue virus in Micronesia. We use a simple
random-weight or pseudo-marginal-type importance
sampling algorithm for both of these examples:

1. Run SMC on the probabilistic program with delayed
sampling enabled, producing N number of samples
x1, . . . , xN with associated weights w1, . . . , wN and
a marginal likelihood estimate Ẑ.

2. Draw a ∈ {1, . . . , N} from the categorical distribu-
tion defined by P (a) = wa/

∑N
n=1 w

n.

3. Output xa with weight Ẑ.

This produces one sample with associated weight, but
may be repeated as many times as necessary—in par-
allel, even—to produce an importance sample as large
as desired. The success of the approach depends on
the variance of Ẑ. This variance can be reduced by
marginalizing out one or more variables (recall Section
2.1). This is what delayed sampling achieves, and so we
compare the variance of Ẑ with delayed sampling en-
abled and disabled. When disabled, the SMC algorithm
is simply a bootstrap particle filter. When enabled,
it yields a Rao–Blackwellized particle filter. Where
parameters are involved (as in the second case study),
the diversity of parameter values depletes through the
resampling step of SMC. This has motivated more so-
phisticated methods for parameter estimation such as
particle Markov chain Monte Carlo methods [1], also
applied to probabilistic programs [28]. Particle Gibbs is
an obvious candidate here. We find, however, that the
reduction in variance afforded by marginalizing out one
or more variables with delayed sampling is sufficient to
enable the above importance sampling algorithm for
the two case studies here.

3.1 Linear-nonlinear state-space model

The first example is that of a mixed linear-nonlinear
state-space model. For this model, delayed sampling
yields a particle filter with locally-optimal proposal and
Rao–Blackwellization.
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a
M

b
M

c
M,T

d
I

e
I

f
I

a ∼ N (0, 1)
qa = N (0, 1)

b ∼ N (a, 1)
qb = N (0, 2)

c ∼ N (b, 1)
qc = N (0, 3)

d ∼ N (b, 1)

e ∼ N (c, 1) f ∼ N (c, 1)

a
M

b
M

c
R

d
M,T

e
M

f
M

a ∼ N (0, 1)
qa = N (0, 1)

b ∼ N (a, 1)
qb = N ( 4

3 ,
2
3 )

c ∼ N (b, 1)
c = 2

(sampled)

d ∼ N (b, 1)
qd = N ( 4

3 ,
5
3 )

e ∼ N (c, 1)
qe = N (2, 1)

f ∼ N (c, 1)
qf = N (2, 1)

Graft(d)
Graft(b)
Prune(c)
Sample(c)
Realize(c)
Marginalize(e)
Marginalize(f)

Marginalize(d)

Figure 2: Demonstration of the M -path and operations on the graph. On the left, the M -path reaches from the
root node, a, to the terminal node, c, marked in bold lines. The Graft operation is called for d. This requires a
realignment of the M -path around b, pruning the previous M -path at c, then extending it through to d. The
stack trace of operations is in the center, and the final state on the right. Descendants of c that were not on the
M -path are now the roots of separate, disjoint trees.

The model is given by [12] and repeated in Appendix
A. It consists of both nonlinear and linear-Gaussian
state variables, as well as nonlinear and linear-Gaussian
observations. Parameters are fixed. Ideally, the linear-
Gaussian substructure is solved analytically (e.g. us-
ing a Kalman filter), leaving only the nonlinear sub-
structure to sample (e.g. using a particle filter). The
Rao–Blackwellized particle filter, also known as the
marginalized particle filter, was designed to achieve
precisely this [2, 22].

Delayed sampling automatically yields this method
for this model, as long as analytical relationships be-
tween multivariate Gaussian distributions are encoded.
In Birch these are implemented as supernodes: sin-
gle nodes in the graph that contain multiple random
variables. While the relationships between individual
variables in a multivariate Gaussian have, in general,
directed acyclic graph structure, their implementation
as supernodes maintains the required tree structure.

The model is run for 100 time steps to simulate data. It
is run again with SMC, conditioning on this data. For
various numbers of particles, it is run 100 times to es-
timate Ẑ, with delayed sampling enabled and disabled.
Figure 3 (left) plots the distribution of these estimates.
Clearly, with delayed sampling enabled, fewer parti-
cles are needed to achieve comparable variance in the
log-likelihood estimate.

3.2 Vector-borne disease model

The second example is an epidemiological case study of
an outbreak of dengue virus: a mosquito-borne tropical
disease with an estimated 50-100 million cases and

10000 deaths worldwide each year [24]. It is based on
the study in [6], which jointly models two outbreaks
of dengue virus and one of Zika virus in two separate
locations (and populations) in Micronesia. Presented
here is a simpler study limited to one of those outbreaks,
specifically that of dengue on the Yap Main Islands
in 2011. The data used consists of 172 observations
of reported cases, on a daily basis during the main
outbreak, and on a weekly basis before and after.

The model consists of two components, representing the
human and mosquito populations, coupled via cross-
infection. Each population is further divided into sub-
populations of susceptible, exposed, infectious and re-
covered individuals. At each time step a binomial
transfer occurs between subpopulations, parameterized
with conjugate beta priors. Details are in Appendix B.

The task is both parameter and state estima-
tion. For this model, delayed sampling produces a
Rao–Blackwellized particle filter where parameters,
rather than state variables, are marginalized out. While
the state variables are sampled immediately, the pa-
rameters are maintained in a marginalized state, condi-
tioned on the samples of these state variables. This is
a consequence of conjugacy between the beta priors on
parameters and the binomial likelihoods of the state
variables (as pseudo-observations).

For various numbers of particles, SMC is run 100 times
to estimate Ẑ, with delayed sampling enabled and dis-
abled. Figure 3 (right) plots the distribution of these
estimates. Clearly, with delayed sampling enabled,
fewer particles are needed to achieve comparable vari-
ance in the log-likelihood estimate. Some posterior
results are given in Appendix B.
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Ẑ
)

Figure 3: Distribution of the marginal log-likelihood estimate (log Ẑ) for different numbers of particles (N) over
100 runs for (left) the linear-nonlinear state-space model, and (right) the vector-borne disease model, with (light
gray) delayed sampling disabled, corresponding to a bootstrap particle filter, and (dark gray) delayed sampling
enabled, corresponding to a Rao–Blackwellized particle filter. All runs use systematic resampling [10] when
effective sample size falls below 0.7N . Boxes indicate the interquartile range, midline the median. In both cases,
significantly fewer particles are required to achieve comparable variance when delayed sampling is enabled.

4 DISCUSSION AND CONCLUSION

Table 1 demonstrates how delayed sampling operates
through typical program structures such as conditionals
and loops, including stochastic branches as encountered
in probabilistic programs. Figure 3 demonstrates the
potential gains. These are particularly encouraging
given that the mechanism is mostly automatic.

Some limitations are worth noting. The graph of
analytically-tractable relationships must be a forest
of disjoint trees. It is unclear whether this is a sig-
nificant limitation in practice, but support for more
general structures may be desirable. It is worth empha-
sizing that this relates to the structure of analytically-
tractable relationships and the ability of the mechanism
to utilize them, not to the structure of the model as a
whole. At present, for more general structures, some
opportunities for variance reduction are missed. One
remedy is to encode supernodes, as for the multivariate
Gaussian distributions in Section 3.1.

Delayed sampling potentially reorders the sampling
associated with assume checkpoints, and the interleav-
ing of this amongst observe checkpoints, but does not
reorder the execution of observe checkpoints. There
is an opportunity cost to this. Consider the final ex-
ample in Table 1: move the observations y1, . . . , yT
into a second loop that traverses time backward from
T to 1. Delayed sampling now draws each xt from
p(dxt | xt+1, yt), not p(dxt | xt+1, y1, . . . , yt). This
is suboptimal but not incorrect: whatever the distri-
bution, importance weights correct for its discrepancy
from the target. It is again unclear whether this is a sig-
nificant limitation in practice; examples seem contrived
and easily fixed by reordering code.

While delayed sampling may reduce the number of sam-
ples required for comparable variance, it does require
additional computation per sample. For univariate re-
lationships (e.g. beta-binomial, gamma-Poisson), this
overhead is constant and—we conjecture—likely worth-
while for any fixed computational budget. For multi-
variate relationships the overhead is more complex and
may not be worthwhile (e.g. multivariate Gaussian
conjugacies require matrix inversions that are O(N3)
in the number of dimensions). A thorough empirical
comparison is beyond the scope of this article.

Finally, while the focus of this work is SMC, delayed
sampling may be useful in other contexts. With undi-
rected graphical models, for example, delayed sampling
may produce a collapsed Gibbs sampler. This is left to
future work.
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Supplementary material

Appendix A details the linear-nonlinear state-space
model, and Appendix B the vector-borne disease model.
Appendix C details the Anglican implementation, and
Appendix D the Birch implementation. Code is in-
cluded for the pedagogical examples in both Anglican
and Birch, and for the empirical case studies, along
with data sets, in Birch only.
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A Details of the linear-nonlinear
state-space model

The full model is described in [12]. The state model
contains both nonlinear (Xn

t ) and linear-Gaussian (X l
t)

state variables, and is given by:

Xn
0 ∼ N (0, 1)

Xn
t ∼ N (arctanxnt−1 +Bxlt−1, 0.01)

X l
0 ∼ N (0, I3×3)

X l
t ∼ N (Axlt−1, 0.01I3×3).

The observation model contains both nonlinear (Y nt )
and linear-Gaussian (Y lt ) observations, and is given by:

Y nt ∼ N
(
0.1(xnt )2sgn(xnt ), 0.1

)
Y lt ∼ N (Cxlt, 0.1I3×3).

Parameters are fixed as follows:

A =

1 0.3 0
0 0.92 −0.3
0 0.3 0.92


B =

(
1 0 0

)
C =

(
1 −1 1

)
.

B Details of the vector-borne disease
model

The process model is a discrete-time and discrete-state
stochastic model based on the continuous-time and
continuous-state deterministic mean-field approxima-
tion used in [6]. It consists of two SEIR (susceptible,
exposed, infectious, recovered) compartmental mod-
els, one for the human population, the other for the
mosquito population, coupled via cross-infection terms.
Each component consists of state variables giving pop-
ulation counts in each of the four compartments: s
(susceptible), e (exposed), i (infectious), and r (recov-
ered), along with a total population n that maintains
the identity n = s+ e+ i+ r, and parameters ν (birth
probability), µ (death probability), λ (transmission
probability), δ (infectious probability), and γ (recov-
ery probability). A susceptible human may become
infected when bitten by an infectious mosquito, while a
susceptible mosquito may become infected when biting
an infectious human.

We use superscript h to denote state variables and
parameters associated with the human component,
and superscript m to denote those associated with the
mosquito component. For state variables, subscripts
index time in days.

B.1 Initial condition model

For the setting of Yap Main Islands in 2011, the follow-
ing initial conditions are prescribed:

nh0 = 7370 nm0 = 10unh0

sh0 = nh0 − eh0 − ih0 − rh0 sm0 = nm0

eh0 ∼ Poisson(10) em0 = 0

ih0 − 1 ∼ Poisson(10) im0 = 0

rh0 ∼ Binomial(nh1 , 6/100) rm0 = 0,

with u ∼ U(−1, 2).

B.2 Transition model

The model transitions in two steps. The first step is an
exchange between compartments that preserves total
population. Denoting with primes the intermediate
state after this first step, we have:

sh′t = sht−1 −⊕eht sm′t = smt−1 −⊕emt
eh′t = eht−1 +⊕eht −⊕iht em′t = emt−1 +⊕emt −⊕imt
ih′t = iht−1 +⊕iht −⊕rht im′t = imt−1 +⊕imt −⊕rmt
rh′t = rht−1 +⊕rht rm′t = rmt−1 +⊕rmt ,

with the newly exposed, infectious, and recovered pop-
ulations distributed as:

⊕eht ∼ Binomial(τht , λ
h) ⊕emt ∼ Binomial(τmt , λ

m)

⊕iht ∼ Binomial(eht−1, δ
h) ⊕imt ∼ Binomial(emt−1, δ

m)

⊕rht ∼ Binomial(iht−1, γ
h) ⊕rmt ∼ Binomial(imt−1, γ

m),

for parameters λh, δh, γh, λm, δm, γm. The τht gives
the number of susceptible humans bitten by at least one
infectious mosquito, and τmt the number of susceptible
mosquitos that bite at least one infectious human:

τht ∼ Binomial
(
sht−1, 1− exp(−imt−1/nht−1)

)
(4)

τmt ∼ Binomial
(
smt−1, 1− exp(−iht−1/nht−1)

)
. (5)

These latter quantities are derived by assuming (a) a
Poisson(nmt ) number of mosquito blood meals per day
with these interactions uniformly distribution across
both humans and mosquitos, (b) that a human is in-
fected with probability λh if interacting one or more
times with an infectious mosquito, and (c) that a
mosquito is infected with probability λm if interacting
one or more times with an infectious human. Note that
the nht−1 appearing in (4) is correct, although one may
expect to see nmt−1 given the otherwise-symmetry of
the equations of this model. In the derivation, nmt−1
also appears in the denominator of both (4) and (5),
but cancels with the Poisson rate parameter for the
number of blood meals, also given by nmt as above.
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The second step accounts for births and deaths:

sht = sh′t −	sht +⊕nht smt = sm′t −	smt +⊕nmt
eht = eh′t −	eht emt = em′t −	emt
iht = ih′t −	iht imt = im′t −	imt
rht = rh′t −	rht rmt = rm′t −	rmt ,

with births distributed as

⊕nht ∼ Binomial(nh′t , ν
h) ⊕nmt ∼ Binomial(nm′t , νm),

with parameters νh and νm, and deaths as

	sht ∼ Binomial(sh′t , µ
h) 	smt ∼ Binomial(sm′t , µm)

	eht ∼ Binomial(eh′t , µ
h) 	emt ∼ Binomial(em′t , µm)

	iht ∼ Binomial(ih′t , µ
h) 	imt ∼ Binomial(im′t , µm)

	rht ∼ Binomial(rh′t , µ
h) 	rmt ∼ Binomial(rm′t , µm),

with parameters µh and µm.

B.3 Observation model

Observations are of the number of new infectious cases
reported at health centers, aggregated over the time
since the last such observation (this is daily during the
peak time of the outbreak and weekly either side). For
times t ∈ {1, . . . , T} where observations are available,
the observation model is given by

yt ∼ Binomial

(
t∑

s=t−lt+1

⊕ihs , ρ

)
,

where lt (lag) indicates the number of days since the
last observation. Significant under-reporting of cases
is expected, reflected in the parameter ρ.

B.4 Parameter model

The following fixed values and priors are assigned to
parameters, translating prior knowledge on rates in [6]
to prior knowledge on probabilities here:

νh = 0 νm = 1/7

µh = 0 µm = 1/7

λh ∼ Beta(1, 1) λm ∼ Beta(1, 1)

δh ∼ Beta

(
16

11
,

28

11

)
δm ∼ Beta

(
17

13
,

35

13

)
γh ∼ Beta

(
13

9
,

23

9

)
γm = 0.

Birth and death in the human population are assumed
to be of minimal impact over the course of the outbreak,
and so their rates are fixed to zero. The expected
lifespan of a mosquito is one week, with birth and

death rates fixed accordingly. Mosquitos do not recover
before death.

Finally, the prior over the reporting probability is

ρ ∼ Beta(1, 1).

B.5 Inference results

Inference is performed by drawing 10000 weighted sam-
ples, each time running SMC with 8192 particles. The
effective sample size of these 10000 weighted samples
is computed to be 2260. Some results are shown in
Figure 4.

C Anglican implementation

Anglican is a functional probabilistic programming lan-
guage integrated with Clojure. Clojure, in turn, is a
Lisp dialect which compiles to Java virtual machine
bytecode, enabling reuse of the Java infrastructure.
The Anglican compiler is built with Clojure macros,
and compiles Anglican programs into continuation-
passing-style Clojure code. This transformation en-
ables inference algorithms to affect the control flow and
record information at checkpoints. Manipulations are
performed both on the continuations themselves and
on the state, which is passed along as an argument in
each continuation call.

For simplicity, delayed sampling is implemented en-
tirely on top of the existing Anglican language, leav-
ing the original language constructs and functional-
ity untouched. A set of new keywords and functions
are added for usage of delayed sampling: ds-<name>,
ds-value, and ds-observe. The ds-value and
ds-observe functions loosely correspond to the
Sample and Observe operations in Section 2.2, but
ds-value also includes functionality for retrieving val-
ues for already-sampled nodes. The set of ds-<name>
functions correspond to the Initialize operations in
Section 2.2, for various probability distributions, e.g.
ds-normal. The delayed sampling graph is conve-
niently encoded in the already existing Anglican state.

As an example, consider the following line of code:

let [x (ds-normal mean sd)]

This binds x to a graph node which is normally dis-
tributed with mean mean and standard deviation sd.
To subsequently introduce another normally distributed
graph node with the node x as mean, one can write

let [y (ds-normal x sd’)]

passing the previous graph node x as a parameter. This
will initialize a conjugate prior relationship between
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Figure 4: Posterior results for the vector-borne disease model example, (left) posterior distribution of newly
infectious cases in humans over time, ⊕iht , (middle) posterior distribution of the reporting probability parameter,
ρ, and (right) posterior predictive distribution of the number of reported cases, y, overlaid with actual observations.
In the left and right plots, the bold line gives the median, darker shaded region the 50% credibility interval, and
lighter shaded region the 95% credibility interval.

them. If y is then observed, x will be conditioned on
the observed value of y.

D Birch implementation

Birch is a compiled, imperative, object-oriented,
generic, and probabilistic programming language. The
latter is its primary research concern. The Birch com-
piler uses C++ as a target language.

Delayed sampling has been implemented using the
Birch type system. Special types are used when declar-
ing variables to make them eligible for delayed sam-
pling. For example, a variable that might ordinarily
be declared to be of type Real may be declared to
be of type Random<Real> to make it eligible for de-
layed sampling. The generic class Random implements
the behavior required for delayed sampling, and is
specialized into classes that encode distributions (e.g.
Gaussian), then further into classes that encode dis-
tributions with analytical relationships to others (e.g.
GaussianWithGaussianMean). The graph required for
delayed sampling is formed implicitly through objects
of these classes and their member attributes.

Birch supports implicit type conversion, compiling di-
rectly to the same feature in C++. These implicit
conversions are used to automatically trigger the value
checkpoint, and are resolved at compile time. For ex-
ample, a Random<Real> object may be passed to a
function that requires a Real argument. An implicit
conversion is used to trigger a value checkpoint, re-
alizing a value of type Real from the object of type
Random<Real>. In this way, the programmer need not
explicitly indicate value checkpoints.
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ABSTRACT

We consider the combined use of resampling and partial rejec-
tion control in sequential Monte Carlo methods, also known
as particle filters. While the variance reducing properties of
rejection control are known, there has not been (to the best
of our knowledge) any work on unbiased estimation of the
marginal likelihood (also known as the model evidence or
the normalizing constant) in this type of particle filter. Being
able to estimate the marginal likelihood without bias is highly
relevant for model comparison, computation of interpretable
and reliable confidence intervals, and in exact approximation
methods, such as particle Markov chain Monte Carlo. In the
paper we present a particle filter with rejection control that
enables unbiased estimation of the marginal likelihood.

Index Terms— Particle filters, sequential Monte Carlo
(SMC), partial rejection control, unbiased estimate of the
marginal likelihood

1. INTRODUCTION

Rejuvenation of particles in methods based on sequential im-
portance sampling is a crucial step to avoid the weight degen-
eracy problem. Sequential Monte Carlo (SMC) methods typ-
ically use resampling, but there are alternative methods avail-
able. Rejection control, proposed by Liu et al. [1] solves
the degeneracy problem by checking the weights of particles
(or streams in their terminology) at given checkpoints, and
comparing them to given thresholds. Particles with weights
below a certain checkpoint threshold are probabilistically dis-
carded and replaced by new particles that are restarted from
the beginning. Discarding particles that have passed through
all previous checkpoints is quite disadvantageous. Liu pro-
posed a modified version of the algorithm in [2], called par-
tial rejection control, where a set of particles is propagated in
parallel between the checkpoints, and each rejected particle
gets replaced by a sample drawn from the particle set at the

This research was supported by the Swedish Foundation for Strategic
Research via the project ASSEMBLE (contract number: RIT15-0012) and
by the Swedish Research Council grants 2013-4853 and 2017-03807.

previous checkpoint (quite similar to resampling), and propa-
gated forward, rather than restarting from the beginning.

Peters et al. [3] combined partial rejection control and re-
sampling: the resampling, propagation and weighting steps
are the same as in standard SMC methods, but an additional
step is performed after the weighting step. Here, the weight
of each particle is compared to a threshold and if it falls be-
low this threshold, the particle is probabilistically rejected,
and the resampling, propagation and resampling steps are re-
peated. This procedure is repeated until the particle gets ac-
cepted. Peters et al. also adapted the algorithm to be used in
an approximate Bayesian computation (ABC) setting.

We consider models with likelihoods and our contribution
is a non-trivial modification of the particle filter with rejec-
tion control, allowing us to define an unbiased estimator of
the marginal likelihood. This modification is very simple to
implement: it requires an additional particle and counting the
number of propagations. The unbiasedness of the marginal
likelihood estimator opens for using particle filters with re-
jection control in exact approximate methods such as particle
marginal Metropolis-Hastings (PMMH, [4]), model compari-
son, and computation of interpretable and reliable confidence
intervals.

2. BACKGROUND

2.1. State space model

State space models are frequently used to model dynamical
systems where the state evolution exhibits the Markov prop-
erty (i.e., the state at time t only depends on the state at time
t−1 but not on the state at any earlier time). Further, the state
is not observed directly, but rather via measurements depend-
ing (stochastically) only on the state at the same time.

Let xt denote the state at time t and yt the corresponding
measurement. The state space model can be represented using
probability distributions:

x0 ∼ µ0(·), xt ∼ ft(·|xt−1), yt ∼ gt(·|xt).

The inference goal is to estimate posterior distributions of
(a subset of) the state variables given a set of measurements,
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Algorithm 1 Bootstrap particle filter (BPF)

ẐBPF ← 1
for n = 1 to N do . Initialize

x
(n)
0 ∼ µ0, w(n)

0 ← 1
end for
for t = 1 to T do

for n = 1 to N do
a(n) ∼ C({w(m)

t−1}Nm=1) . Resample

x
(n)
t ∼ ft(·|x(a

(n))
t−1 ) . Propagate

w
(n)
t ← gt(yt|x(n)t ) . Weight

end for
ẐBPF ← ẐBPF

∑N
n=1 w

(n)
t /N

end for

and to estimate the expected value of test functions with re-
spect to these distributions. We are usually interested in the
joint filtering distribution p(x0:t|y1:t) and the filtering distri-
bution p(xt|y1:t), where x0:t denotes the sequence of all states
until time t, i.e. x0, x1, . . . , xt, and similarly for y1:t.

2.2. Particle filters

Particle filters are sampling-based methods that construct sets
St of N weighted samples (particles) to estimate the filtering
distribution p(xt|y1:t) for each time t. The baseline bootstrap
particle filter creates the initial set S0 by drawing N samples
from µ0 and setting their (unnormalized) weights to 1, i.e.,

S0 =
{

(x
(n)
0 , w

(n)
0 )

∣∣∣ x(n)0 ∼ µ0, w
(n)
0 = 1

}N

n=1
.

The set St at time t is constructed from the previous set of
particles St−1 by repeatedly (N times) choosing a particle
from St−1 with probabilities proportional to their weights
(this step is called resampling), drawing a new sample x

from ft(·|x(a)t−1) where a is the index of the chosen particle
(propagation), and setting its weight to gt(yt|x) (weighting):

St =
{

(x
(n)
t , w

(n)
t )

∣∣∣ an ∼ C({w(m)
t−1}Nm=1)

x
(n)
t ∼ ft(·|x(an)

t−1 ),

w
(n)
t = gt(yt|x(n)t )

}N

n=1
.

Here, C denotes the categorical distribution with the unnor-
malized event probabilities specified as the parameter. The
crucial element of a particle filter is the resampling step that
avoids the weight degeneracy problem of sequential impor-
tance sampling. The pseudocode for the bootstrap particle
filter is listed as Algorithm 1.

The unbiased estimator ẐBPF of the marginal likelihood
p(y1:T ) (unbiased in the sense that E[ẐBPF] = p(y1:T )) is

given by [5]:

ẐBPF =

T∏
t=1

1

N

N∑
n=1

w
(n)
t .

Particle filters are a family of different variants of this al-
gorithm. These variants use different proposal distributions to
choose the initial set of samples, to propagate or to resample
particles and use appropriate changes in the calculation of the
importance weights w.r.t. the filtering distributions. In order
to reduce the variance of estimators, some methods do not re-
sample at every time step, but rather only when a summary
statistic of weights crosses a given threshold, e.g., when the
effective sample size (ESS) falls below νN , where ν ∈ [0, 1]
is a tuning parameter.

In probabilistic programming, the state space model can
be used to model program execution and particle filters are
used as one of the general probabilistic programming infer-
ence methods. Examples of probabilistic programming lan-
guages that use particle filters and SMC for inference include
Anglican [6], Biips [7], Birch [8], Figaro [9], LibBi [10], Ven-
ture [11], WebPPL [12] and Turing [13].

3. PARTICLE FILTER WITH REJECTION
CONTROL

In certain models, such as models with jump processes or
rare-event processes, or when the measurements contain out-
liers, the weights of many particles after propagation and
weighting might be rather low or even zero. This decreases
the ESS and thus increases the variance of the estimators of
interest.

Below we present the particle filter with rejection control
(PF-RC) that ensures that the weights of all particles in the
particle set St are greater than or equal to a chosen threshold,
denoted by ct > 0. The process of drawing new particles
in PF-RC is almost identical to the process for the bootstrap
particle filter described in the previous section, with one ad-
ditional step that we will refer to as the acceptance step, de-
scribed in the next paragraph.

Let (x
′(n)
t , w

′(n)
t ) denote the particle after the resampling,

propagation and weighting steps. The particle is accepted
(and added to St) with probability min(1, w

′(n)
t /ct). If ac-

cepted, the particle weight is lifted to max(w
′(n)
t , ct). If the

particle is rejected, the resampling, propagation, weighting
and acceptance steps are repeated until acceptance. The fol-
lowing table summarizes the acceptance step:

Condition Acc. prob. If accepted If rejected
w
′(n)
t ≥ ct 1 w

(n)
t ← w

′(n)
t —

x
(n)
t ← x

′(n)
t

w
′(n)
t < ct w

′(n)
t /ct w

(n)
t ← ct Sample new

x
(n)
t ← x

′(n)
t x

′(n)
t
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Algorithm 2 Particle filter with rejection control (PF-RC)

Ẑ ← 1
for n = 1 to N do . Initialize

x
(n)
0 ∼ µ0, w(n)

0 ← 1
end for
for t = 1 to T do

Pt ← 0
for n = 1 to N do

repeat
a(n) ∼ C({w(m)

t−1}Nm=1) . Resample

x
(n)
t ∼ ft(·|x(a

(n))
t−1 ) . Propagate

w
(n)
t ← gt(yt|x(n)t ) . Weight

Pt ← Pt + 1
α ∼ Bernoulli(min(1, w

(n)
t /ct))

until α . Accept / reject
w

(n)
t ← max(w

(n)
t , ct) . Update the weight

end for
repeat . Additional particle

a′ ∼ C({w(m)
t−1}Nm=1)

x′ ∼ ft(·|x(a
′)

t−1)
w′ ← gt(yt|x′)
Pt ← Pt + 1
α ∼ Bernoulli(min(1, w′/ct))

until α
Ẑ ← Ẑ(

∑N
n=1 w

(n)
t )/(Pt − 1)

end for

An important difference compared to the bootstrap particle
filter is that we also use the same procedure (i.e., the resam-
pling, propagation and acceptance steps) to sample one addi-
tional particle. This particle is not added to the particle set
and its weight is not used either, but the number of propaga-
tions until its acceptance is relevant to the estimation of the
marginal likelihood p(y1:T ).

Let Pt denote the total number of propagation steps per-
formed in order to construct St as well as the additional par-
ticle. By the total number we mean that the propagation steps
for both rejected and accepted particles are counted. The es-
timate Ẑ of the marginal likelihood p(y1:T ) is given by

Ẑ =

T∏
t=1

∑N
n=1 w

(n)
t

Pt − 1
.

Theorem. The marginal likelihood estimator Ẑ is unbiased
in sense that E[Ẑ] = p(y1:T ).

Proof. See Appendix A.

The pseudocode for the PF-RC is listed as Algorithm 2.
The gray color marks the part that is the same as in the boot-
strap particle filter.

The question remains of how to choose the thresholds
{ct}. One option is to use some prior knowledge (that can

Table 1. Comparison of the filters for the model with outliers.
See also the description in the text.

c N ρ ESS ESS var ρ var

/ρ log Ẑ log Ẑ
BPF 1024 1.00 101.6 101.6 2.18 2.18

PF
-R

C

10−14

1024

1.06 180.1 169.8 1.13 1.20
10−13 1.08 285.8 264.0 1.08 1.17
10−12 1.12 386.1 346.1 1.02 1.14
10−11 1.17 460.2 394.8 0.90 1.05
10−10 1.25 471.0 377.9 0.87 1.08
10−9 1.38 491.9 356.3 0.76 1.04
10−8 1.62 568.0 350.4 0.65 1.06

BPF 1200 1.17 185.6 158.3 1.91 2.24

be obtained by pilot runs of a particle filter) and choose fixed
thresholds. Liu et al. [1] mention several options for de-
termining the thresholds dynamically after propagating and
weighting all particles for the first time at each time step,
using a certain quantile of these weights or a weighted av-
erage of the minimum, average and maximum weight, i.e.,
ct = p1 minw′t + p2w̄

′
t + p3 maxw′t, where all pi > 0 and

p1 + p2 + p3 = 1. In general, setting the thresholds dynami-
cally in each run breaks the unbiasedness of the marginal like-
lihood estimator (as demonstrated by an example in Appendix
B).

Note that the alive particle filter [14] can be obtained as a
limiting case of the particle filter with rejection control when
all ct → 0. Instead of α ∼ Bernoulli(min(1, w/ct)) we need
to use α ← true if w > 0 and false otherwise, but the rest of
the algorithm remains the same.

4. EXPERIMENTS

4.1. Linear Gaussian state space model with outliers

The particle filter with rejection control may be useful in situ-
ations where measurements include outliers. To demonstrate
this we considered the following linear Gaussian state space
model:

x0 ∼ N (0, 0.25), xt ∼ N (0.8xt−1, 0.25),

yt ∼ N (xt, 0.1).

We simulated a set of measurements with outliers by replac-
ing the measurement equation with yt ∼ 0.9N (xt, 0.1) +
0.1N (0, 1), and used these measurements in a set of ex-
periment with both the BPF and a set of PF-RC with the
thresholds at all checkpoints equal to a given value, i.e.
ct = c, where c ∈ {10−14, 10−13, . . . , 10−8}. We ran
each filter M = 1000 times using N = 1024 particles,
collected a set of the estimates {Ẑm}Mm=1 of the marginal
likelihood, and calculated several summary statistics, pre-
sented in Table 1. Here, the effective sample size ESS means
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Table 2. Comparison of the filters for the object tracking
problem.

Per-
N ρ ESS ESS var ρ var

centile /ρ log Ẑ log Ẑ
BPF 4096 1.00 8.5 8.5 482.00 482.00

PF
-R

C

50

4096

2.68 4.3 1.6 94.75 253.68
60 2.13 6.8 3.2 44.58 94.83
70 1.99 8.7 4.4 35.22 70.18
80 2.35 10.1 4.3 32.30 75.95
90 3.39 13.7 4.0 14.63 49.54
95 4.78 32.0 6.7 3.95 18.87
99 7.97 44.6 5.6 1.08 8.65

BPF 32650 7.97 10.7 1.3 14.39 114.67

(
∑M

m=1 Ẑm)2/
∑M

m=1 Ẑ
2
m, and ρ denotes the average num-

ber of propagations relatively to the number of propagation in
the bootstrap particle filter with the same number of particles.

The filter that maximized ESS/ρ used 1.17 times more
propagations than the baseline BPF, so we also repeated the
experiment using a BPF with 1200 particles to match the
number of propagations; the results are shown in the last row.

4.2. Object tracking

We implemented the particle filter with rejection control as an
inference method in the probabilistic programming language
Birch [8]. We used the multiple object tracking model from
[8] but restricted it to two objects that both appear at the initial
time within the target area for computational purposes.

We used the program to simulate the tracks and measure-
ments for 50 time steps. We ran experiments using 50-th,
60-th, 70-th, 80-th, 90-th, 95-th and 99-th percentiles as the
thresholds, but in order to keep the marginal likelihood esti-
mates unbiased, we first ran the program once for each of the
percentiles (using 32768 particles) and saved the threshold
values. We then ran the program M = 100 times for each of
the percentiles, using the saved values as fixed thresholds and
with only N = 4096 particles. In case where the threshold
was 0, we fell back to accepting all particles. We compared
the marginal likelihood estimates with the estimates obtained
by running the program with the BPF inference. The results
are summarized in Table 2 and Fig. 1.

We also repeated the experiments using a bootstrap parti-
cle filter with 32650 particles (to match the number of prop-
agations in the filter with the 99-th percentile), the results are
presented in the last row of the table.

5. DISCUSSION AND CONCLUSION

In this paper we presented a particle filter with rejection con-
trol (PF-RC) that enables unbiased estimation of the marginal
likelihood. We briefly mentioned several situations where the

BPF 50% 60% 70% 80% 90% 95% 99%
Percentile

−3810

−3800

−3790

−3780

−3770

−3760

−3750

−3740

lo
g
Ẑ

Fig. 1. Box plot of log Ẑ for the object tracking problem.

unbiasedness is important. We also showed a couple of ex-
amples that demonstrated the potential of the method. As we
saw, the PF-RC outperformed (in terms of ESS and var log Ẑ)
the bootstrap particle filter (BPF) even when the latter used
more particles and matched the total number of propagations.
This is due to the fact that the number of propagations varies
between the time steps in PF-RC, and more propagations are
used “where it is needed”, while BPF uses the same number
of propagations at each time step. The PF-RC also needs to
use less memory compared to the BPF with the matched num-
ber of propagations, which might be an important advantage
in problems requiring many particles. On the other hand, it
might not always be clear how to determine the thresholds. In
our future work we wish to look into this question, especially
in the context of using PF-RC in exact approximate methods
such as particle marginal Metropolis-Hastings method.
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A. PROOF OF UNBIASEDNESS OF THE MARGINAL LIKELIHOOD ESTIMATOR

The proof follows the proof of unbiasedness of the marginal likelihood estimator for the alive particle filter given in [14].

Lemma 1.

E

[∑N
n=1 w

(n)
t

Pt − 1

∣∣∣∣∣St−1
]

=

N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

p
(
yt

∣∣∣x(n)t−1

)
.

Proof. For brevity we omit conditioning on St−1 in the notation. A candidate sample x′ is constructed by drawing a sample
from St−1 with the probabilities proportional to the weights {w(n)

t−1} and propagating it forward to time t, i.e.

x′ ∼
N∑

n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

ft

(
x′
∣∣∣x(n)t−1

)
.

The candidate sample x′ is accepted with probability min(1, gt(yt|x′)/ct). If the sample is rejected, a new candidate sample is
drawn from the above-mentioned distribution. The acceptance probability pAt

is given by

pAt =

∫
min

(
1,
gt(yt|x′)

ct

) N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

ft

(
x′
∣∣∣x(n)t−1

)
dx′.

Accepted samples are distributed according to the following distribution:

xt ∼
1

pAt

min

(
1,
gt(yt|xt)

ct

) N∑
n=1

w
(n)
t−1∑N

m=1 w
(m)
t−1

ft

(
xt

∣∣∣x(n)t−1

)
and the expected value of the weight wt = max(gt(yt|xt), ct) of an accepted sample is given by

E[wt] =

∫
max (gt(yt|xt), ct)

1

pAt

min

(
1,
gt(yt|xt)
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) N∑
n=1

w
(n)
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m=1 w
(m)
t−1

ft

(
xt

∣∣∣x(n)t−1

)
dxt.

Note that max (gt(yt|xt), ct) × min(1, gt(yt|xt)/ct) = gt(yt|xt). To prove that, consider two cases: if gt(yt|xt) ≥ ct, the
result of the multiplication is gt(yt|xt)× 1 = gt(yt|xt); if gt(yt|xt) < ct, the result is ct× gt(yt|xt)/ct = gt(yt|xt). (This also
gives an intuition about why the weight gets lifted to ct in the case of acceptance with wt < ct.) Using this we have that:

E[wt] =

∫
gt(yt|xt)

1

pAt

N∑
n=1

w
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m=1 w
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)
dxt =

1
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∫
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p
(
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)
.

The number of propagations Pt is a random variable distributed according to the negative binomial distribution with the
number of successes N + 1 and the probability of success pAt

:

P (Pt = D) =

(
D − 1

(N + 1)− 1

)
pN+1
At

(1− pAt)
D−(N+1).

The expected value of
∑N
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(n)
t /(Pt − 1) is given by
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]
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The rest of the proof is identical to the proof in [14], which we include below for completeness.

Lemma 2.
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Proof. Similar to the proof of Lemma 1 we have that
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Using this result we have that
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Lemma 3.
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Proof. By induction. The base step for h = 0 was proved in Lemma 1. In the induction step, let us assume that the equality
holds for h and prove it for h+ 1:
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Theorem.

E

 T∏
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N∑
n=1

w
(n)
t

Pt − 1

 = p(y1:T ).

Proof. Using Lemma 3 with t = T, h = T − 1 and

E

[
1

N

N∑
n=1

p
(
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∣∣∣x(n)0

)]
= p(y1:T ).

B. BIASEDNESS OF THE MARGINAL LIKELIHOOD ESTIMATOR WITH DYNAMIC THRESHOLDS

Consider the following example: There are two coins on a table, one fair (F) and one biased (B). The probability of getting
head (H) and tail (T) using the biased coin are 0.8 and 0.2, respectively. We choose a coin (uniformly at random) and flip it.
The probability that the outcome will be head is

p(Y = H) = p(Y = H|X = F)p(X = F) + p(Y = H|X = B)p(X = B) =

= 0.5× 0.5 + 0.8× 0.5 = 0.65,

where X denotes the selected coin (either F or B) and Y denotes the observed outcome (either H or T).
Although this is quite a trivial example, we can still use it to show that using dynamic thresholds, such as quantiles deter-

mined in each sweep, may lead to a biased estimate of the marginal likelihood. Note that if the thresholds are constant in all
sweeps, the marginal likelihood is unbiased as shown in the proof in Appendix A.

Let us employ a particle filter with rejection control (although there is only one time step) to estimate p(Y = H). We
will use the median of the candidate weights after the first propagation of each particle (including the additional particle) as
the threshold. To demonstrate the biasedness of the estimator, we consider a filter with only one particle (i.e., N = 1). The
estimator of the marginal likelihood is in this case given by:

Ẑ =
w(1)

P − 1
.

There exist four possible states of the initial candidate particles (including the additional particle) after the propagation step:

Case x′(1) x′(2) w′(1) w′(2) Median
1 H H 0.8 0.8 0.8
2 T T 0.5 0.5 0.5
3 H T 0.8 0.5 0.65
4 T H 0.5 0.8 0.65

Each of these cases is equally likely (the probability of each one being 0.25).
In the first case, both weights are equal to the threshold so both particles are accepted, w(1) = 0.8, P = 2 andE[Ẑ|case 1] =

0.8.
Using a similar reasoning we get E[Ẑ|case 2] = 0.5 for the second case.
The remaining cases are more difficult. Let pF = 0.5/0.65 denote the acceptance probability of a particle with weight

w′ = 0.5, and pA = 0.5 × 1 + 0.5 × 0.5/0.65 denote the acceptance probability of a restarted particle (its weight being
irrelevant).

In the third case, the weight w(1) of the accepted particle is 0.8, but the number P of propagations varies. The expected
value of Ẑ is given by

E[Ẑ|case 3] = pF
0.8

2− 1
+ (1− pF )

∞∑
P=3

0.8

P − 1
(1− pA)P−3pA

= 0.8

(
pF + (1− pF )

pA(pA − log(pA)− 1)

(1− pA)2

)
≈ 0.70392
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The fourth case is even more complicated, as we need to distinguish between the case where the weight w(1) of the accepted
particle is 0.8 and the case where the weight is 0.65:

E[Ẑ|case 4] = pF
0.65

2− 1
+ (1− pF )

∞∑
P=3

0.8

P − 1
(1− pA)P−30.5 + (1− pF )

∞∑
P=3

0.65

P − 1
(1− pA)P−30.5

0.5

0.65

= 0.65

(
pF + (1− pF )

pA − log(pA)− 1

(1− pA)2

)
≈ 0.58132

Finally, we can show that the expected value of Ẑ is not equal to p(Y = H):

E[Ẑ] = 0.25E[Ẑ|case 1] + 0.25E[Ẑ|case 2] + 0.25E[Ẑ|case 3] + 0.25E[Ẑ|case 4] ≈ 0.64631 6= 0.65.

204 PAPERS






	Introduction
	Probabilistic programming
	Introduction
	Basic concepts
	Defining and using random variables
	Conditioning on the observed data
	Automatic inference
	Illustrative examples
	Existing probabilistic programming languages

	Programmatic model
	Sequential Monte Carlo based inference
	Introduction
	Monte Carlo integration
	Rejection sampling
	Importance sampling
	Importance sampling for state-space models
	Sequential Monte Carlo


	Birth-death models of evolution
	Introduction
	Complete and surviving trees
	Constant-rate birth-death model
	Selected non-constant-rate birth-death models
	Time-dependent birth-death models
	Lineage-specific birth-death-shift model
	Bayesian analysis of macro-evolutionary mixtures
	Cladogenetic diversification rate shift models
	Birth-death models with state

	Bayesian inference of the model parameters
	Likelihood function for the CRBD model

	Probabilistic programming for phylogenetics
	Parameter inference for the CRBD model
	Alive particle filter
	Delayed sampling
	Conditioning on the time of the most recent common ancestor

	Conclusion
	Acknowledgments
	Summary in Swedish
	Used distributions and their parameterizations
	Used abbreviations

