Solutions to selected exercises and quizzes

Fall 2019, Term 2

If you find an error please send an email to jan.kudlicka@it.uu.se.

Lecture 2 and 3 – Entity-Relationship Model

The Solution for *Today's problem* has been uploaded to Course material / Additional notes.

Exercise 1

(4) N: N – one employee can work on several projects, and one project can have several employees who work on it.

Exercise 2

(3) 1:1 – we have assumed that one employee will not manage more than one department. One department can only have one manager.

Exercise 3

(4) Total / total – each employee must have a department (otherwise he/she is not an employee), each department has to have some employees (assuming that a department will not be created without a manager).

Exercise 4

(3) Partial / total – not every employee is a manager, but every department has a manager (same assumption as in Exercise 2).

Exercise 5

(3)

Exercise 6

(1)

Total – if we assume that each person in the university database is an employee, alumnus or student.

Overlapping – since e. g. an employee can be an alumnus at the same time (or a student might be an employee).

Exercise 7

(3)

Total since each project must be either Course, R&D project or Another.

Disjoint since it cannot be two at the same time.

Lecture 4 - Relational Model

Exercise 1

(2)

Exercise 2

(3)

Exercise 3

(2)

Since X is not in $K, K \setminus \{X\} = K$.

Lecture 5 - From (E)ER to the Relational Model

Exercise 1

Solution is in the lecture slides.

Exercise 2

Assuming id is a key attribute (and making it the PK in the relational model): Employee(<u>id</u>, first_name, last_name)
EmployeeComment(<u>id</u>, <u>comment</u>)

Exercise 3

All options can be used to "translate" the given EER model to an ER model. Option (D) is the best way.

Exercise 4

(C) – since it cannot cover the case when an entity of type P is neither C1 nor C2.

Exercise 5

(A) – assuming "type" is a single name of the entity type. It cannot cover the case when an entity is both C1 and C2.

Exercise 6

Solution has been uploaded to Course material / Additional notes.

Lecture 6, 7, 8 – SQL

Problems and solutions have been uploaded to Course material / Exercises.

Lecture 9 and 10 - Functional dependencies and normalization

Quiz 1

(1)

Exercise 2

$$\begin{split} \{A\}^+ &= \{A\} \\ \{B\}^+ &= \{B\} \\ \{A,B\}^+ &= \{A,B,C,D,E\} \\ \{C\}^+ &= \{A,B,C,D,E\} \\ \{D\}^+ &= \{D\} \\ \{C,D\}^+ &= \{A,B,C,D,E\} \\ \{E\}^+ &= \{D,E\} \end{split}$$

Quiz 2

(3)

Exercise 3

See the separate lecture notes.

Quiz 3

(3)

E o D breaks 3NF since a non-prime attribute depends on another non-prime attribute.

Quiz 4

(4)

Quiz 5
(1) $ \mbox{UNIQUE}(B,C) \mbox{ means that } (B,C) \mbox{ is a candidate key, } C \rightarrow D \mbox{ breaks 2NF} (D \mbox{ is a non-prime attribute and it depends on } C \mbox{ which is a proper subset of a candidate key)}. $
Lecture 11 – Indexes and transactions
Quiz 1
(4) A hash-based index can only be used with $=$, but we have employee.hour_salary $<$ 200 in the WHERE-clause.
Quiz 2
(2)
Quiz 3
(1) is the best answer.
Quiz 4
(3) and (4)(4) is the best answer, but requires to understand indexes on a little bit deeper level.
Quiz 5
(1) and (2)
Quiz 6
(5)
Quiz 7
(1)
Quiz 8
(1)

Lecture 12 – Users, authorization and security

Exercise 1

UPDATE(graduated) ON student SELECT(id) ON student SELECT(student_id, course_id, grade) ON record SELECT(id, credit) ON course

Quiz 1

(1), (2), (6)

Quiz 2

(4)

Assuming Charlie does not have the SELECT on Student privilege.

Quiz 3

(2)

Bob did not grant the permission to Tim directly so he cannot revoke it.

From the PostrgreSQL documentation:

A user can only revoke privileges that were granted directly by that user. If, for example, user A has granted a privilege with grant option to user B, and user B has in turned granted it to user C, then user A cannot revoke the privilege directly from C. Instead, user A could revoke the grant option from user B and use the CASCADE option so that the privilege is in turn revoked from user C. For another example, if both A and B have granted the same privilege to C, A can revoke his own grant but not B's grant, so C will still effectively have the privilege.

(Note: MySQL does not follow the standard when it comes to revoking privileges.)