
Lecture 11 – Indexes and Transactions
1DL301 Database Design I

Jan Kudlicka (jan.kudlicka@it.uu.se)

Fall 2019, Period 2

VOX AULAE

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 2

INTENDED LEARNING OUTCOMES

▶ To understand the purpose of indexes and how they work.
▶ To be able to determine when an index is needed and to be able
to create it.

▶ To understand what transactions are, why and how they are
used.

▶ To understand the ACID properties of transactions.
▶ To be able to use transactions in practice.
▶ To understand different isolation levels and related reading
phenomena.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 3

EXPERIMENT

CREATE TABLE person(
id int PRIMARY KEY,
fname varchar(32) NOT NULL,
lname varchar(32) NOT NULL,
phone varchar(32)

);

MySQL database, 10 000 000 people. (Each row takes in average 50
bytes.)

▶ How long does it take to find name and phone number for
person with ID 4,857,845?

▶ How long does it take to find the phone number for all people
named Kristin Elvik?

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 4

EXPERIMENT, CONT’D

SELECT *
FROM person
WHERE id=4857845;+---------+--------+----------+------------+
| id | fname | lname | phone |
+---------+--------+----------+------------+
| 4857845 | Børre | Heggheim | 9913139357 |
+---------+--------+----------+------------+
1 row in set (0.00 sec)

SELECT *
FROM person
WHERE fname='Kristin' AND lname='Elvik';+---------+---------+-------+------------+
| id | fname | lname | phone |
+---------+---------+-------+------------+
| 7350165 | Kristin | Elvik | NULL |
| 9120140 | Kristin | Elvik | 3441093539 |
+---------+---------+-------+------------+
2 rows in set (3.74 sec)

3.74 sec is very slow. Why is it so slow and what can we do about it?

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 5

EXPLANATION

The slow query from the experiment performs a full table scan:
each row in the table is read and checked if it meets the condition.
To see the execution plan (how the query is executed):

▶ EXPLAIN SELECT ... in MySQL
▶ EXPLAIN QUERY PLAN SELECT ... in SQLite

The execution plan of the slow query from the experiment:
EXPLAIN
SELECT *
FROM person
WHERE fname='Kristin' AND lname='Elvik';
+----+-------------+--------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+--------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | person | NULL | ALL | NULL | NULL | NULL | NULL | 8815388 | 1.00 | Using where |
+----+-------------+--------+------------+------+---------------+------+---------+------+---------+----------+-------------+

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 6

INDEX

Index – a persistent data structure which can be used to quickly
locate rows in a table based on the values of one or several given
attributes.
Similar idea to an index in a book – keywords are ordered alphabetically and for each keyword
there is a list of pages.

Cost of an index:

▶ extra storage space (usually not a problem)
▶ index creation (might take time, but it is done only once)
▶ index maintenance – index must be updated when the data in
the table changes (might be a problem)

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 7

CREATING AND DROPPING INDEXES

CREATE INDEX index_name ON table(column, column, . . .);
CREATE UNIQUE INDEX index_name ON table(column, column, . . .);

A unique index does not allow duplicate values.
Indexes on the primary key attributes are created automatically.
Some RDBMS (e.g. MySQL) create indexes on the foreign key
attributes automatically as well.
Different SQL syntax for dropping an index in different RDBMS:
SQLite:
DROP INDEX table.index_name;

MySQL:
ALTER TABLE table DROP INDEX index_name;

For other systems, check the reference manual.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 8

EXPERIMENT REVISITED

CREATE INDEX lname_fname ON person(lname, fname);

SELECT *
FROM person
WHERE fname='Kristin' AND lname='Elvik';
+---------+---------+-------+------------+
| id | fname | lname | phone |
+---------+---------+-------+------------+
| 7350165 | Kristin | Elvik | NULL |
| 9120140 | Kristin | Elvik | 3441093539 |
+---------+---------+-------+------------+
2 rows in set (0.00 sec)

EXPLAIN
SELECT *
FROM person
WHERE fname='Kristin' AND lname='Elvik';
+----+-------------+--------+------------+------+---------------+-------------+---------+-------------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+--------+------------+------+---------------+-------------+---------+-------------+------+----------+-------+
| 1 | SIMPLE | person | NULL | ref | lname_fname | lname_fname | 196 | const,const | 2 | 100.00 | NULL |
+----+-------------+--------+------------+------+---------------+-------------+---------+-------------+------+----------+-------+

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 9

HOW DOES AN INDEX WORK?

Two main data structures being used for indexes:

▶ B and B+ trees – useful for conditions with =, <, ≤, >, ≥ and
BETWEEN

19

5 13 23

1 …
2 …
3 …
4 …

5 …
6 …
9 …
11 …

13 …
14 …
15 …
17 …

19 …
20 …
21 …
22 …

23 …
25 …

▶ Hash tables – useful for conditions with = only

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 10

CLUSTERED VS. NON-CLUSTERED INDEXES

Great explanation of clustered and non-clustered indexes:
https://youtube.com/watch?v=ITcOiLSfVJQ
Non-clustered index

▶ Physical order of the rows is not the same as the index order.
▶ Leaf level of the index points to where the data is stored.

Clustered index

▶ Physical order of the rows is the same as the index order.
▶ Used for indexing of primary keys.
▶ There might only be one clustered index per table.
▶ Fast retrieval of data when multiple rows match the condition.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 11

https://youtube.com/watch?v=ITcOiLSfVJQ

DECIDING WHAT TO INDEX

▶ Which queries and insert/update/delete statements will be
executed?

▶ How often?
▶ What are the time constraints?
▶ How many rows are in the relevant tables?

Tip: Add indexes which might be helpful and use

▶ EXPLAIN SELECT ... in MySQL
▶ EXPLAIN QUERY PLAN SELECT ... in SQLite

to see how the query is executed, what indexes are used and to check
if the performance is satisfactory. Check execution time (with no
cache). Drop indexes which are not used.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 12

OTHER METHODS OF PERFORMANCE OPTIMIZATION

▶ Denormalization
E(A1, A2), F(B1, B2), EF(A1, B1) → EF(A1, B1, A2, B2)

▶ Storing derived attributes
▶ Storing summary statistics

Example: Storing the number of employees for each department, storing the sum of
hours_spent for each employee.

▶ Vertical partitioning
E(A1, A2, A3) → E1(A1, A2), E2(A1, A3). E1 and E2 might be stored on separate physical
location or database servers.

▶ Horizontal partitioning (sharding)
Rows are divided into shards which might be stored on separate physical locations or
database servers. E. g. logs are or records are partitioned based on the year when the
log or record was created.

▶ Hardware tuning

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 13

LOAD BALANCING AND REPLICATION (FOR INFO ONLY)

Client network

Load balancer

Web servers

Load balancer MySQL master

MySQL slaves

Read queries Write queries

Read queries Replication

From High Performance MySQL: Optimization, Backups, and Replication by Schwartz Harvey, Peter Zaitsev and Vadim Tkachenko

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 14

QUIZ 1

SELECT employee.*, department.title
FROM employee, department
WHERE employee.department_id=department.id
AND department.title='Production A'
AND employee.hour_salary < 200;

Which of the following indexes could NOT be useful?

1. Tree-based index on department.title
2. Hash-based index on department.title
3. Tree-based index on employee.hour_salary
4. Hash-based index on employee.hour_salary

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 15

QUIZ 2

CREATE INDEX emp_lname ON employee(last_name);

SELECT *
FROM employee
WHERE last_name LIKE '%g'

Is the index emp_lname going to be used when executing this query?

1. Yes
2. No

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 16

QUIZ 3

Consider a relation R(A, B, C,D) containing 107 records. A is the
primary key, and B contains 105 distinct values. The following SQL
prepared statements are executed very frequently:
UPDATE R SET D=? WHERE B=?
SELECT D FROM R WHERE C=?

Which indexes would you create?

1. One index on B and one on C
2. Index on B
3. One index on D and one on B
4. Index on (C, B)
5. Index on (B, D)

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 17

QUIZ 4

Consider a relation R(A, B, C,D) containing 107 records. B contains 105
distinct values. The following SQL prepared statement is executed
very frequently:
SELECT C FROM R WHERE B=?

Which indexes would you create?

1. One index on B and one on C
2. Index on C
3. Index on B
4. Index on (B, C)
5. Index on (C, B)

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 18

EXERCISE: MONEY TRANSFER

Initial state of the Account table:
AccountNo Name Balance
12345678 Jan’s checking account 3500
23456789 Jan’s savings account 13000
… … …

Jan transfers 3000 SEK from his checking account to his savings
account:

AccountNo Name Balance
12345678 Jan’s checking account 500
23456789 Jan’s savings account 16000
… … …

Write SQLs to execute this money transfer and discuss what can go
wrong during their execution.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 19

EXAMPLES OF WHAT CAN GO WRONG

UPDATE Account
SET Balance=Balance-3000
WHERE AccountNo=12345678

UPDATE Account
SET Balance=Balance+3000
WHERE AccountNo=23456789

▶ The first SQL gets executed, followed by a software, hardware or
network failure.

▶ Both SQLs get executed, but the hardware failure occurs before
the changes are permanently stored on a storage device.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 20

TRANSACTION

Transaction – a series of operations that need to be executed as a
single unit of work and that transforms the database from one
consistent (and valid) state to another.
Note that the integrity constraints might be violated during a transaction but not when it has
finished.

Failure (or a user’s decision to abort the transaction) must be treated
as if the transaction never happened.

▶ Commit – making the “effects of the transaction” permanent
(successful executing the transaction)

▶ Rollback – aborting the transaction (because of a failure or
user’s decision)

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 21

EXERCISE: CONCURRENCY

Jan has a subscription from Netflix which withdraws 100 SEK each
month from Jan’s checking account.
What can go wrong if this transfer happens to be executed at the
same time as the transfer of money to Jan’s savings account?
What are the possible balances at Jan’s checking account after
executing both transfers?

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 22

EXERCISE: CONCURRENCY, CONT’D

One of possible schedules:

Transfer 1 Transfer 2
READ balance of 12345678

READ balance of 12345678
balance← balance− 3000

balance← balance− 100
WRITE balance

WRITE balance
… …

The account balance after both transfers will be 3400.
Other schedules might lead to the balance 500 and 400.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 23

LOST UPDATE PROBLEM

T1 T2
READ a

READ a
UPDATE a

UPDATE a
WRITE a

WRITE a

The update of a in T1 is “lost”, a is overwritten by T2 which read the
state before updating and storing a in T1.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 24

CONCURRENCY

Databases are usually accessed (both queried and modified) by many
clients at the same time.
To avoid problems with concurrent (parallel) execution (such as the
lost update problem) a transaction schedule must be serializable:
Execution of concurrent transactions must be equivalent to a serial
execution of the transactions.
Example: In our example, the execution must be equivalent either to transferring money to Jan’s
savings account first and then to Nexflix, or to Netflix first and then to Jan’s savings account.

Note that in general different serial orders might lead to different results. If we care about the order we must run the
transactions serially (rather than running them concurrently).

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 25

ACID

ACID – a set of required properties of transactions:

▶ Atomicity – all statements in a transaction are executed or none.
▶ Consistency – all database constraints are satisfied after a
transaction is executed.

▶ Isolation – the result of executing concurrent transactions is the
same as if the transactions were executed serially.

▶ Durability – once a transaction finishes, effects of the
transaction are permanently stored in the database.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 26

TRANSACTIONS IN SQL

▶ To start a transaction:

START TRANSACTION

or

BEGIN

▶ To commit the transaction (making the changes permanent):
COMMIT

▶ To roll back the transaction (canceling the changes):
ROLLBACK

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 27

EXAMPLE OF A TRANSACTION IN SQL

BEGIN;

UPDATE Account
SET Balance=Balance-3000
WHERE AccountNo=12345678;

UPDATE Account
SET Balance=Balance+3000
WHERE AccountNo=23456789;

COMMIT;

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 28

ISOLATION LEVELS

The ACID isolation property is often relaxed to reduce the overhead
and increase the concurrency.
There are weaker isolation levels that allow some serializability
violations in order to achieve higher performance.
Isolation level is set per transaction and it reflects what read
phenomena might occur in the current transaction.
Read phenomena:

▶ Dirty reads
▶ Non-repeatable reads (also called inconsistent reads)
▶ Phantom reads

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 29

READ PHENOMENA: DIRTY READ

Reading data written by another transaction before it is committed:

T1 T2
SELECT stock FROM product
WHERE id=1;
-- returns 30

UPDATE product SET stock=29
WHERE id=1;
-- transaction is not finished yet

SELECT stock FROM product
WHERE id=1;
-- returns 29 (rather than 30)

ROLLBACK;

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 30

READ PHENOMENA: NON-REPEATABLE READ

Retrieving the same row twice might return different data:

T1 T2
SELECT stock FROM product
WHERE id=1;
-- returns 30

UPDATE product SET stock=29
WHERE id=1;
COMMIT;

SELECT stock FROM product
WHERE id=1;
-- returns 29 (rather than 30)

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 31

READ PHENOMENA: PHANTOM READ

New rows might appear in tables during the transaction:

T1 T2
SELECT stock FROM product
WHERE id BETWEEN 1 AND 100;

INSERT INTO product(id, stock)
VALUES (25, 100);
COMMIT;

SELECT * FROM product
WHERE id BETWEEN 1 AND 100;
-- includes <25, 100> as well

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 32

ISOLATION LEVELS

Di
rty

re
ad
s

No
n-
re
pe
at
ab
le

re
ad
s

Ph
an
to
m

re
ad
s

READ UNCOMMITTED May occur May occur May occur
READ COMMITTED − May occur May occur
REPEATABLE READ − − May occur
SERIALIZABLE − − −

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 33

ISOLATION LEVELS, CONT’D

▶ Default level for InnoDB in MySQL is REPEATABLE READ.
▶ SQL to change the isolation level (of the next transaction):

SET TRANSACTION ISOLATION LEVEL level
where level is:
▶ SERIALIZABLE
▶ REPEATABLE READ
▶ READ COMMITTED
▶ READ UNCOMMITTED

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 34

QUIZ 5

Which of the following is true if a transaction with only SELECT
statements is executed at isolation level REPEATABLE READ?

1. SELECT COUNT(*) FROM T may return different results if executed
multiple times inside the transaction.

2. SELECT B FROM T WHERE A=1 may return different results if
executed multiple times inside the transaction (A is the primary
key).

3. A join that returns a non-empty table, when re-executed inside
the transaction may return an empty result.

4. Nested queries may not be allowed, if another transaction has
disabled them.

5. None of the other answers is true.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 35

QUIZ 6

Which of the following is true if a transaction with only SELECT
statements is executed at isolation level SERIALIZABLE?

1. SELECT COUNT(*) FROM T may return different results if executed
multiple times inside the transaction.

2. SELECT B FROM T WHERE A=1 may return different results if
executed multiple times inside the transaction (A is the primary
key).

3. A join that returns a non-empty table, when re-executed inside
the transaction may return an empty result.

4. Nested queries may not be allowed, if another transaction has
disabled them.

5. None of the other answers is true.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 36

QUIZ 7

R(A) contains two rows: {(1), (2)}. The following transactions run
concurrently:
T1: UPDATE R SET A=2*A
T2: SELECT avg(A) FROM R

If transaction T2 executes using the read uncommitted level, what are
the possible values it returns?

1. 1.5, 2, 2.5, 3
2. 1.5, 2, 3
3. 1.5, 2.5, 3
4. 1.5, 3

Question by Jennifer Widom

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 37

QUIZ 8

R(A) and S(B) both contain two rows: {(1), (2)}. The following
transactions run concurrently:
T1: UPDATE R SET A=2*A; UPDATE S SET B=2*B
T2: SELECT avg(A) FROM R; SELECT avg(B) FROM S

If transaction T2 executes using the read committed level, is it
possible for T2 to return two different values?

1. Yes
2. No

Question by Jennifer Widom

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 11 – Indexes and Transactions 38

