
Lecture 6, 7 and 8 – SQL
1DL301 Database Design I

Jan Kudlicka (jan.kudlicka@it.uu.se)

Fall 2019, Period 2

VOX AULAE

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 2

INTENDED LEARNING OUTCOME

After completing all three lectures on SQL you should

▶ know the syntax and semantics of SQL, and
▶ be able to write and execute SQL statements and queries to
retrieve, create, modify and remove data stored in a relational
database.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 3

ORGANIZATION OF THE LECTURES

All three “lectures” are a tutorial where you will learn and practice
SQL queries.
Exercises which we will be working on during the tutorial can be
found on the Lecture and problems page in the Studentportalen.
We will use an online tool:

https://db1.course.it.uu.se

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 4

https://db1.course.it.uu.se

WHAT IS SQL?

SQL—Structured Query Language—is a special-purpose language
designed for querying and managing data in relational databases.
SQL is an ANSI (American National Standard Institute) standard.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 5

A SIMPLE SELECT

1 SELECT attribute [, ...]
2 FROM table_reference [, ...]
3 [WHERE where_condition]

▶ attribute – specifies a column in the result,
▶ table_reference – the name of the table,
▶ where_condition – the condition that selected (returned) rows
must satisfy.

No WHERE clause means all rows (= WHERE TRUE).
Attributes shown in the result and in the condition must be from the
specified table(s), but the condition might use attributes which are
not included in the result

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 6

SIMPLE EXAMPLES INVOLVING A SINGLE TABLE

Relation employee(id, first_name, last_name, hour_salary,
department_id).

1 SELECT first_name, last_name
2 FROM employee

1 SELECT first_name, last_name
2 FROM employee
3 WHERE department_id = 3

It is possible to use * instead of explicitly writing all attributes:
1 SELECT *
2 FROM employee
3 WHERE last_name = "Smith"

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 7

SIMPLE EXAMPLES INVOLVING A SINGLE TABLE, CONT’D

Instead of an attribute we can also use arithmetic expressions
(involving attributes and/or constants):

1 SELECT first_name, last_name, hour_salary*176
2 FROM employee

We can rename a column in the result by adding AS and the new
name after the attribute name or the expression:

1 SELECT first_name, last_name, hour_salary*176 AS salary
2 FROM employee

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 8

SELECT DISTINCT

Departments with the hour salary higher than 230:

1 SELECT department_id
2 FROM employee
3 WHERE hour_salary > 230
To remove duplicate rows from the result, we can use SELECT DISTINCT:

1 SELECT DISTINCT department_id
2 FROM employee
3 WHERE hour_salary > 230

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 9

WHERE CLAUSE

Logical connectives AND, OR and NOT can be used to create a more
complex where_condition. The condition may also contain
arithmetic expressions involving attributes and/or constants:

1 SELECT first_name, last_name
2 FROM employee
3 WHERE (hour_salary*76 < 30000 OR hour_salary IS NULL)
4 AND department_id = 2

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 10

IS [NOT] NULL

Some special operators (in addition to =, <, <=, >, >=, <>):
▶ IS NULL – the value is not specified/known, e.g.,

hour_salary IS NULL
▶ IS NOT NULL – the attribute has a concrete value

Never use = NULL nor <> NULL!!!
1 SELECT first_name, last_name
2 FROM employee
3 WHERE hour_salary = NULL

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 11

OTHER OPERATORS

▶ [NOT] BETWEEN ... AND ... – the value is [not] between the
given values, e.g.,
hour_salary BETWEEN 100 AND 200

▶ [NOT] IN – true if the value is [not] in the given set, e.g.,
department_id IN (1, 2, 3)

▶ [NOT] LIKE pattern – [not] matching values against the given
pattern with wildcards:
▶ _ = any character
▶ % = any substring

For example, last_name LIKE "K%" matches all rows where
the last name starts with K

Note: This is not an exhaustive list.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 12

ORDER BY CLAUSE

Order of rows in the result can be given by adding the ORDER BY
clause:

1 SELECT select_expr [, ...]
2 FROM table_reference [, ...]
3 [WHERE where_condition]
4 [ORDER BY order_expr [ASC | DESC] [, ...]]

order_expr can be an attribute, a column alias or an expression
with attributes.
Default order is ascending (ASC).

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 13

ORDER BY CLAUSE, EXAMPLES

Sort by the last name, in descending order:

1 SELECT *
2 FROM employee
3 ORDER BY last_name DESC

Sort employees by their whole name:

1 SELECT id, first_name, last_name, hour_salary
2 FROM employee
3 ORDER BY last_name, first_name

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 14

RELATIONAL PRODUCT BY AN EXAMPLE

A1 A2
1 2
3 4

×
B1 B2
α β
γ δ

=

A1 A2 B1 B2
1 2 α β
1 2 γ δ
3 4 α β
3 4 γ δ

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 15

RELATIONAL PRODUCT BY AN EXAMPLE

Table employee:
id last_name first_name department_id
1 Alnes Bernt 1
2 Fjeldal Mads 1
5 Nymo Ingvar 2

Table department:
id title
1 Planning
2 Production A

department_id is a FK referencing department(id)

1 SELECT *
2 FROM employee, department

id last_name first_name department_id id title
1 Alnes Bernt 1 1 Planning
1 Alnes Bernt 1 2 Production A
2 Fjeldal Mads 1 1 Planning
2 Fjeldal Mads 1 2 Production A
5 Nymo Ingvar 2 1 Planning
5 Nymo Ingvar 2 2 Production A

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 16

INNER JOINS

We want to show the id, first name, last name and department’s title
for all employees.
Idea: Do the relational product and take only the rows where
employee’s department_id is equal to department’s id (a “join
condition”):

1 SELECT employee.*, department.title
2 FROM employee, department
3 WHERE employee.department_id = department.id

id last_name first_name department_id title
1 Alnes Bernt 1 Planning
2 Fjeldal Mads 1 Planning
5 Nymo Ingvar 2 Production A

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 17

TABLE ALIASES

If an attribute’s name is unique (no other involved table has an
attribute with the same name), the table reference can be dropped:

1 SELECT employee.*, title
2 FROM employee, department
3 WHERE department_id = department.id

Tables can be referenced by using aliases:

1 SELECT e.*, d.title
2 FROM employee AS e, department AS d
3 WHERE e.department_id = d.id
Note: AS can be dropped for table aliases.

If a query joins a table with the same table, using aliases is the only
way how to reference the tables!

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 18

ALTERNATIVE SYNTAX FOR JOINS

Alternative syntax for joins:

1 SELECT employee.*, department.title
2 FROM employee
3 JOIN department ON employee.department_id = department.id

Conditions not specifying how the join is performed remain in the
WHERE clause, e.g.,

1 SELECT employee.*, department.title
2 FROM employee
3 JOIN department ON employee.department_id = department.id
4 WHERE employee.last_name LIKE 'K%'

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 19

End of lecture 6

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 20

SET OPERATIONS – UNION

1 SELECT ...
2 UNION [ALL]
3 SELECT ...

UNION combines the result sets from two (or more) SELECT queries.
Duplicated rows are removed unless UNION ALL is used.
The result sets of the queries must have the same number of
columns and compatible data types for each column.
Merged result might be ordered by adding an ORDER BY clause.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 21

SET OPERATIONS – INTERSECT

1 SELECT ...
2 INTERSECT [ALL]
3 SELECT ...

INTERSECT: The query returns distinct rows that are in both result
sets.
INTERSECT ALL: The query returns rows that are in both result sets.
(If a given row is in the first result set c1 times and in the second
result set c2 times, it will be in the result min(c1, c2) times.)
Note: Not used very often.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 22

SET OPERATIONS – EXCEPT

1 SELECT ...
2 EXCEPT [ALL]
3 SELECT ...

EXCEPT: The query returns distinct rows from the first result set
which are not in the second result set.
EXCEPT ALL: The query returns rows from the first result set which
are not in the second result set. (If a given row is in the first result set
c1 times and in the second result set c2 times, it will be in the result
c1 − c2 times if c1 > c2, and not at all otherwise.)
Note: Not used very often.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 23

SET OPERATIONS – EXAMPLE
1 SELECT * FROM T1 ... SELECT * FROM T2 ORDER BY 1

Ro
ws
in
T1

Ro
ws
in
T2

UN
IO
N

UN
IO
N
AL
L

IN
TE
RS
EC
T

IN
TE
RS
EC
T
AL
L

EX
CE
PT

EX
CE
PT

AL
L

A A A A A A C A
A A B A B A C
A B C A B
B B D A
C D A

B
B
B
C
D

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 24

AGGREGATE FUNCTIONS

Aggregate functions, e.g., count(), sum(), avg(), min(), max(), can be
used to calculate summary statistics based on rows selected by a
WHERE clause.
The parameter of an aggregate function might be an attribute or an
expression.
It is also possible to calculate statistics based on distinct values, i.e.,
count(DISTINCT hour_salary).
If you use an aggregate function in an SQL query (without grouping),
all columns in the result must be aggregates.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 25

AGGREGATE FUNCTIONS, CONT’D

Aggregate functions only consider non-null values (with exception of
count(*) which returns the number of matched rows).
Example: SELECT salary ... returns rows:
45, 36, 40, 45, 50, NULL, 73, 40, NULL, 46
count(*) = 10
Number of rows is 10.
count(salary) = 8
45, 36, 40, 45, 50, NULL, 53, 40, NULL, 46
count(distinct salary) = 6
45, 36, 40, 45, 50, NULL, 53, 40, NULL, 46

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 26

AGGREGATE FUNCTIONS, EXAMPLES

The number of employees and the average salary:

1 SELECT count(*), avg(hour_salary)
2 FROM employee

The number of employees and the average salary in the department
with ID 1:

1 SELECT count(*), avg(hour_salary)
2 FROM employee
3 WHERE department_id = 1

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 27

GROUPING

We can divide selected rows into groups based on the value of one or
several attributes (or expressions) and calculate summary statistics
(aggregates) in each group.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 28

GROUP BY CLAUSE

Grouping can be given by adding the GROUP BY clause:
1 SELECT select_expr [, ...]
2 FROM table_reference [, ...]
3 [WHERE where_condition]
4 [GROUP BY group_expr [, ...]]
5 [ORDER BY order_expr [ASC | DESC] [, ...]]

The group_expr can be an attribute, an expression or a column alias.
A special case we have already seen: Using aggregates without a
GROUP BY clause = one group consisting of all selected rows.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 29

GROUP BY CLAUSE, CONT’D

When using a GROUP BY clause, columns in the result must be:

▶ group statistics (aggregates), or
▶ grouping attributes (or expressions using these attributes)

If SQL99’s T301 is implemented, you can also use:

▶ attributes functionally dependent on grouping attributes

Note: Some systems, including MySQL, might allow using other
attributes too, but they will choose a “random” value from all
(potentially different) attribute values in each group.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 30

GROUP BY CLAUSE, EXAMPLES

The minimum and maximum salary per department:

1 SELECT department_id, min(hour_salary), max(hour_salary)
2 FROM employee
3 GROUP BY department_id

The total number of employees and the average salary per
department:

1 SELECT department_id, count(*), avg(hour_salary)
2 FROM employee
3 GROUP BY department_id

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 31

HAVING CLAUSE

A HAVING clause can be used to choose the groups that will be
included in the result:

1 SELECT select_expr [, ...]
2 FROM table_reference [, ...]
3 [WHERE where_condition]
4 [GROUP BY group_expr [, ...]]
5 [HAVING having_condition]
6 [ORDER BY order_expr [ASC | DESC] [, ...]

No HAVING clause means all groups.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 32

HAVING CLAUSE, EXAMPLE

What is the maximum salary in departments with at least 10
employees?

1 SELECT department_id, max(hour_salary) AS max_salary
2 FROM employee
3 GROUP BY department_id
4 HAVING count(*) >= 10

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 33

EXAMPLE STEP BY STEP

SELECT city, avg(price) FROM hotel WHERE country='SE'
GROUP BY city HAVING count(*) > 1

name city country price
Akademihotellet Uppsala SE 696
Alexandra Hotel Stockholm SE 790
Anker Hotel Oslo NO 885
Best Western Stockholm SE 1880
Grand Hotel Oslo NO 1580
Nova Park Knivsta SE 2695
Park Inn Uppsala SE 1025
Radisson Blu Uppsala SE 1120
Rival Stockholm SE 1695
Smart Hotel Oslo NO 820

name city country price
Akademihotellet Uppsala SE 696
Park Inn Uppsala SE 1025
Radisson Blu Uppsala SE 1120

name city country price
Alexandra Hotel Stockholm SE 790
Best Western Stockholm SE 1880
Rival Stockholm SE 1695

name city country price
Nova Park Knivsta SE 2695

city avg(price)
Uppsala 947
Stockholm 1455
Knivsta 2695

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 34

End of lecture 7

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 35

NESTED QUERIES, MOTIVATING EXAMPLE

Which employees have the lowest hour salary?
Attempt 1:

1 SELECT *
2 FROM employee
3 ORDER BY salary
4 LIMIT 1

Does this work?

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 36

NESTED QUERIES, MOTIVATING EXAMPLE, CONT’D

Which employees have the lowest hour salary?
Attempt 2:

1 SELECT min(salary)
2 FROM employee

returns 12780.

1 SELECT *
2 FROM employee
3 WHERE salary = 12780

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 37

NESTED QUERIES

In the WHERE clause, instead of a constant or a “hardcoded” value we
can use a nested query which returns one value (single column,
single row).
Attempt 3:

1 SELECT *
2 FROM employee
3 WHERE salary = (SELECT min(salary) FROM employee)

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 38

NESTED QUERIES, CONT’D

Similarly, instead of a list of constants, we can use a nested query
which returns several values (single column, several rows).
Example:
Select departments with employees whose last name starts with K:

1 SELECT *
2 FROM department
3 WHERE id IN
4 (SELECT department_id
5 FROM employee
6 WHERE last_name LIKE 'K%')

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 39

CORRELATED NESTED QUERIES

A nested query can also use attributes from the tables used in the
main (outer) query.
Such queries are called correlated or synchronized.
Example:

1 SELECT * FROM employee e
2 WHERE salary > (
3 SELECT avg(salary)
4 FROM employee
5 WHERE department_id=e.department_id
6)

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 40

ANY AND ALL

1 expr (=|<>|<|<=|>|>=) ANY (nested_query)

True iff at least one of the values returned by the nested query meets
the condition.

1 expr (=|<>|<|<=|>|>=) ALL (nested_query)

True iff all values returned by the nested query meet the condition.

expr = ANY (nested_query) is equivalent to
expr IN (nested_query).
expr <> ALL (nested_query) is equivalent to
expr NOT IN (nested_query).

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 41

[NOT] EXISTS

EXISTS (nested_query) – true iff the nested query returns at least
one row.
NOT EXISTS (nested_query) – true iff the nested query does not
return any row.
Example: Select the worst paid employees in each department:

1 SELECT *
2 FROM employee e
3 WHERE NOT EXISTS
4 (SELECT *
5 FROM employee
6 WHERE department_id = e.department_id
7 AND salary < e.salary)

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 42

USING THE RESULT OF A NESTED QUERY AS A TABLE

Example: Select the minimum of the average salaries in each
department.

1 SELECT min(avg_hour_salary)
2 FROM (
3 SELECT department_id,
4 avg(hour_salary) AS avg_hour_salary
5 FROM employee
6 GROUP BY department_id
7)

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 43

VIEWS

A view is a named “virtual” table representing the result set of a given
SELECT query.

1 CREATE VIEW view_name AS
2 SELECT ...

A view can be used in queries in the same way as regular tables.
The content of this “virtual” table is determined dynamically when
such a query is executed.

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 44

VIEWS, EXAMPLE

1 CREATE VIEW employee_and_department AS
2 SELECT employee.id, first_name, last_name, title
3 FROM employee, department
4 WHERE department_id = department.id;
5

6 SELECT * FROM employee_and_department

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 45

OUTER JOINS

Inner joins like

1 SELECT *
2 FROM A
3 JOIN B ON B.attr_b = A.attr_a
returns “only” combinations of rows in A and B that match the
condition.

1 SELECT *
2 FROM A
3 LEFT JOIN B ON B.attr_b = A.attr_a
includes also all rows in A with no matching row in B (values for the
attributes in B in the result set are NULL)

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 46

OUTER JOINS, CONT’D

1 SELECT *
2 FROM A
3 RIGHT JOIN B ON B.attr_b = A.attr_a
includes rows in B with no matching row in A (values for the
attributes in A in the result set are NULL).

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 47

OUTER JOINS, EXAMPLE
Table employee:
id last_name department_id
1 Nymo 23
2 Tveten 24

Table department:
id title
23 IT
24 Math
25 Physics

1 SELECT d.title, e.id, e.last_name
2 FROM department d
3 LEFT JOIN employee e ON e.department_id = d.id
=

1 SELECT d.title, e.id, e.last_name
2 FROM employee e
3 RIGHT JOIN department d ON e.department_id = d.id

title id last_name
IT 1 Nymo
Math 2 Tveten
Physics NULL NULL

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 48

REMINDER: INSERTION, UPDATE AND DELETION

Insertion:

1 INSERT INTO employee(id, first_name, last_name)
2 VALUES (11, "Peter", "Hansen")

Update:

1 UPDATE employee
2 SET hour_salary = hour_salary + 20
3 WHERE department_id = 4

Deletion:

1 DELETE FROM employee
2 WHERE id = 11
Warning: DELETE FROM table_name (without the WHERE clause) will remove all rows in the table!

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 49

FURTHER RESOURCES

▶ SQL Tutorial at w3schools.com
https://www.w3schools.com/sql/

▶ MySQL Reference Manual
https://dev.mysql.com/doc/

Jan Kudlicka (jan.kudlicka@it.uu.se): Lecture 6, 7 and 8 – SQL 50

https://www.w3schools.com/sql/
https://dev.mysql.com/doc/

