5
UPPSALA
UNIVERSITET

Sequential Monte Carlo Methods
Lecture 17 — SMC for Probabilistic Programs

Jan Kudlicka, Uppsala University
2019-08-30

Outline - Lecture 17

Aim: Introduce probabilistic programming as a new and exciting way
of probabilistic modeling and inference, explain the basic concepts
and demonstrate how SMC can be used for inference.

Outline:

1. Probabilistic programming

2. Inference (importance sampling and SMC)

1/22

Probabilistic programming

Probabilistic modeling in a nutshell:

1. Write down the model in the language of mathematics
2. Derive a (bespoke) inference algorithm

3. Implement the algorithm as a computer program and run it

Developing probabilistic models and inference algorithms is a
time-consuming and error-prone process.

2/22

Probabilistic programming

Developing probabilistic models and inference algorithms is a
time-consuming and error-prone process.

Probabilistic programming is a (relatively) new approach to change
this:

- The generative model is written as a computer program
- Automatic inference (as an integral part of the programming
language)

3/22

Why probabilistic programming?

Fast development of models

- Easy to write generative models as programs
- No need for deriving and implementing a bespoke inference
algorithm

More expressive models

- Programs can use stochastic branching and recursion, and
therefore more expressive than graphical models

Probabilistic
programs

Graphical
models

Development of widely-applicable inference algorithms

422

Consider the following toy model:

X1 ~ N(0,5%)
yi~N(x,1)
X3 ~ N (0.5, 1)
Y2 ~ N (x,1)

The model in Matlab:
- x1 = normrnd(0, 5);
>yl = normrnd(x1, 1);
; X2 = normrnd(0.5%x1, 1);
. y2 = normrnd(x2, 1);
s fprintf('x1=%f, x2=%f, y1=%f, y2=%f\n', x1, x2, y1, y2);

We can run the script multiple times to get samples from the joint
distribution p(x1,x2, y1, 2).

5/22

+ x1 = normrnd(0, 5);

> y1 = normrnd(x1, 1);

s x2 = normrnd(0.5%x1, 1);

. y2 = normrnd(x2, 1);

s fprintf('x1=%f, x2=%f, y1=%f, y2=%f\n', x1, x2, y1, y2);

We observed that y; = 4.78 and y, = 3.12, and want to know the
posterior distribution p(x|y; = 4.78,y, = 3.12).

Can we change the Matlab script to get samples from this posterior
distribution?

6/22

Probabilistic programming languages

A probabilistic programming language (PPL) is a programming
language that provides ergonomic support for random variables and
automatic inference.

Probabilistic constructs:

- assume - declaring a random variable by specifying its
probability distribution:

variable ~ Distribution(. . .)

- observe - conditioning on the observed data:

observe Distribution(...) value

7122

Stochastic branching and recursion |

Programs may use random variables as though any ordinary variable,
even to control the flow of the execution.

Example:
x ~ Normal(0, 1)
if x > 0.5 then

y ~ Normal(x, 1)
else

y ~ Exponential(1)
end if

8/22

Stochastic branching and recursion Il

Example: Birth-death model for generating trees (birth rate A, death
rate)
function TREE(T)
A ~ Exponential(A +)
T —-A
if 7 < 0then
return (0, @)
end if
b ~ Bernoulli (A\/(A + 1))
if b then
return (7, {TREE(7"), TREE(7')})
else
return (7', @)
end if
end function

9/22

Toy model as a probabilistic program

Vi 478
Vo < 3.12

X1 ~ Normal(0, 5)
observe Normal(xy, 1) y4
Xy ~ Normal(0.5 x1, 1)
observe Normal(xz, 1) v,
return x,

Note: A probabilistic program encodes a posterior distribution.

Let's implement this model in WebPPL, a simple PPL you can run in
your browser (http://webppl.org).

10/22

http://webppl.org

Toy model in WebPPL

. var model = function() {

,var x1 = sample(Gaussian({mu: 0, sigma: 5}));
observe(Gaussian({mu: x1, sigma: 1}), 4.78);

var x2 = sample(Gaussian({mu: 0.5x*x1, sigma: 1}));
observe(Gaussian({mu: x2, sigma: 1}), 3.12);
return x1;

}
. var dist = Infer({method: 'SMC', particles: 10000}, model);
s viz.auto(dist);
0.45 4
0.40 4
0.354
0.30 4
0.254
0.20 4
0.154
0.104
0.050 4

0.0 T T T T
0 2 4 6 8
(state)

density

1/22

Deterministic programming vs. statistics vs. PPL

(Deterministic) o Probabilistic
} Statistics .
programming programming
[Parameters] [0 J [Parameters J
1 1 1
Program p(X|0) Program
1 1 1
Output X Observations

Based on a figure by Frank Wood.

12/22

Inference

Inference algorithms

Automatic inference is a difficult task.

- Exact inference

- Analytical solutions (e.g. Kalman filtering)
- Enumeration (for discrete models of limited dimension)

- Approximate inference
- Monte Carlo inference

- Markov chain Monte Carlo (MCMC)
- Sequential Monte Carlo (SMC)
- Hamiltonian Monte Carlo (HMC)

- Variational inference

13/22

Program state, sampling

Note: We make some simplifications for pedagogical reasons.

Program state: the contents of the memory used by the program to
store its data.

Immediate sampling: During execution of a probabilistic program,
whenever the program encounters an unobserved random variable
(i.e. an assume statement), it immediately samples its value from the
distribution associated with it.

14/22

Graphical model of the execution

(3)HHIR NP NP, HOO) o o)

2

gi1(n| &) 92(y2|) ge(yr]Ar)

X; denotes the state at the i-th observe statement.

.
p(Xrr,yar) = H Fe(X 1) g (ve] X2),

t=1
where Xy = @. We are interested in the posterior probability

p(Xi.1, Y1)

X1, V17).
p(i7) O<D(175 V1 T)

p(Xo.rlyrr) =

15/22

Importance sampling |

We can use importance sampling (IS) to sample from p(X;.7|y1.7).

Proposal distribution:
q(Xa.7) Hft Xe|Xe—)
The importance weight:

w(Xo.r) = Hgt Vil &)

Exercise

How can we sample from f;(X:|X:—1)?
How can we calculate g:(y:|X:)?

16/22

Importance sampling Il

Run the program forward with the following handling of probabilistic
statements (checkpoints):

- assume: sample a value of the random variable (immediate
sampling)

- observe: update the weight by multiplying it with the likelihood
of the observed value w.rt. its distribution and parameters
(calculated during the execution).

17/22

Importance sampling for the toy example

. var model = function() {

var x1 = sample(Gaussian({mu: 0, sigma: 5}));
observe(Gaussian({mu: x1, sigma: 1}), 4.78);

var x2 = sample(Gaussian({mu: 0.5*x1, sigma: 1}));
observe(Gaussian({mu: x2, sigma: 1}), 3.12);
return x1;

w « 1 (initial weight)

18/22

Importance sampling for the toy example

var model = function() {

var x1 = sample(Gaussian({mu: 0, sigma: 5}));
observe(Gaussian({mu: x1, sigma: 1}), 4.78);

var x2 = sample(Gaussian({mu: 0.5*x1, sigma: 1}));
observe(Gaussian({mu: x2, sigma: 1}), 3.12);
return x1;

Sampling x; from N(0,5%): x; < 4.1

18/22

Importance sampling for the toy example

var model = function() {

var x1 = sample(Gaussian({mu: 0, sigma: 5}));
observe(Gaussian({mu: x1, sigma: 1}), 4.78);

var x2 = sample(Gaussian({mu: 0.5*x1, sigma: 1}));
observe(Gaussian({mu: x2, sigma: 1}), 3.12);
return x1;

W wx N(4.78 | 4.1,1) = 0.3166

18/22

Importance sampling for the toy example

. var model = function() {

var x1 = sample(Gaussian({mu: 0, sigma: 5}));
observe(Gaussian({mu: x1, sigma: 1}), 4.78);

var x2 = sample(Gaussian({mu: 0.5*x1, sigma: 1}));
observe(Gaussian({mu: x2, sigma: 1}), 3.12);
return x1;

Sampling x, from N(2.05,1): x, + 2.7

18/22

Importance sampling for the toy example

var model = function() {

var x1 = sample(Gaussian({mu: 0, sigma: 5}));
observe(Gaussian({mu: x1, sigma: 1}), 4.78);

var x2 = sample(Gaussian({mu: 0.5*x1, sigma: 1}));
observe(Gaussian({mu: x2, sigma: 1}), 3.12);
return x1;

W wxN(3.12 2.7,1) = w* 0.3653 = 0.1156

18/22

Importance sampling for the toy example

. var model = function() {

var x1 = sample(Gaussian({mu: 0, sigma: 5}));
observe(Gaussian({mu: x1, sigma: 1}), 4.78);

var x2 = sample(Gaussian({mu: 0.5*x1, sigma: 1}));
observe(Gaussian({mu: x2, sigma: 1}), 3.12);
return x1;

Returned value 41, weight 01156

18/22

SMC |

Recall the disadvantages of importance sampling.

Better idea is to use SMC methods.

Bootstrap particle filter

- Start a set of N parallel executions (particles) of the program.
- Repeat:

- Run each particle until the next observe statement (incl.
the weight calculation) and pause the execution.
- Resample the particles and resume execution.

19/22

Pa
rticles

R

\X\\\\ 00%%6

@&

aﬁ@iﬂ

[

{&\O\{g@d\

@s\ \

— 60%@ 6@*\

. .
Qg@@‘i’\@%

—)‘

— \

2
0/22

Examples of PPLs

There already exist quite a few PPLs today with different
programming paradigms, for example:

- Functional: Anglican and Venture
- Imperative: Probabilistic C, Turing, Stan, Edward and Pyro
- Object-oriented: Birch (with delayed sampling)

21/22

Want to learn more?

[3 Noah D. Goodman and Andreas Stuhlmiiller.
The design and implementation of probabilistic programming
languages.
Retrieved 2019-8-29 from http://dippl.org

[§ Jan-Willem van de Meent et al.
An introduction to probabilistic programming.
arXiv preprint arXiv:1809.10756, 2018.

[§ Lawrence M. Murray and Thomas B. Schon.
Automated learning with a probabilistic programming language:
Birch.
Annual Reviews in Control, 2018.

22/22

http://dippl.org

	Probabilistic programming
	Inference

