

Sequential Monte Carlo Methods

Lecture 17 – SMC for Probabilistic Programs

Jan Kudlicka, Uppsala University 2019-08-30

Outline – Lecture 17

Aim: Introduce probabilistic programming as a new and exciting way of probabilistic modeling and inference, explain the basic concepts and demonstrate how SMC can be used for inference.

Outline:

- 1. Probabilistic programming
- 2. Inference (importance sampling and SMC)

Probabilistic programming

Motivation

Probabilistic modeling in a nutshell:

- 1. Write down the model in the language of mathematics
- 2. Derive a (bespoke) inference algorithm
- 3. Implement the algorithm as a computer program and run it

Developing probabilistic models and inference algorithms is a time-consuming and error-prone process.

Probabilistic programming

Developing probabilistic models and inference algorithms is a time-consuming and error-prone process.

Probabilistic programming is a (relatively) new approach to change this:

- · The generative model is written as a computer program
- Automatic inference (as an integral part of the programming language)

Why probabilistic programming?

Fast development of models

- Easy to write generative models as programs
- No need for deriving and implementing a bespoke inference algorithm

More expressive models

 Programs can use stochastic branching and recursion, and therefore more expressive than graphical models

Development of widely-applicable inference algorithms

Toy model I

Consider the following toy model:

$$x_1 \sim \mathcal{N}(0, 5^2)$$

 $y_1 \sim \mathcal{N}(x_1, 1)$
 $x_2 \sim \mathcal{N}(0.5x_1, 1)$
 $y_2 \sim \mathcal{N}(x_2, 1)$

The model in Matlab:

```
1 x1 = normrnd(0, 5);
2 y1 = normrnd(x1, 1);
3 x2 = normrnd(0.5*x1, 1);
4 y2 = normrnd(x2, 1);
5 fprintf('x1=%f, x2=%f, y1=%f, y2=%f\n', x1, x2, y1, y2);
```

We can run the script multiple times to get samples from the joint distribution $p(x_1, x_2, y_1, y_2)$.

Toy model II

```
1 x1 = normrnd(0, 5);
2 y1 = normrnd(x1, 1);
3 x2 = normrnd(0.5*x1, 1);
4 y2 = normrnd(x2, 1);
5 fprintf('x1=%f, x2=%f, y1=%f, y2=%f\n', x1, x2, y1, y2);
```

We observed that $y_1 = 4.78$ and $y_2 = 3.12$, and want to know the posterior distribution $p(x_1|y_1 = 4.78, y_2 = 3.12)$.

Can we change the Matlab script to get samples from this posterior distribution?

Probabilistic programming languages

A probabilistic programming language (PPL) is a programming language that provides ergonomic support for random variables and automatic inference.

Probabilistic constructs:

 assume – declaring a random variable by specifying its probability distribution:

```
variable \sim Distribution(...)
```

observe – conditioning on the observed data:

```
observe Distribution(...) value
```

Stochastic branching and recursion I

Programs may use random variables as though any ordinary variable, even to control the flow of the execution.

```
Example: x \sim \text{Normal}(0, 1) if x > 0.5 then y \sim \text{Normal}(x, 1) else y \sim \text{Exponential}(1) end if
```

Stochastic branching and recursion II

```
Example: Birth-death model for generating trees (birth rate \lambda, death
rate \mu)
function Tree(\tau)
     \Delta \sim \mathsf{Exponential}(\lambda + \mu)
    \tau' \leftarrow \tau - \Delta
     if \tau' < 0 then
          return (0, \emptyset)
     end if
     b \sim \text{Bernoulli} (\lambda/(\lambda + \mu))
     if b then
          return (\tau', \{TREE(\tau'), TREE(\tau')\})
     else
          return (\tau', \varnothing)
     end if
end function
```

Toy model as a probabilistic program

```
y_1 \leftarrow 4.78

y_2 \leftarrow 3.12

x_1 \sim \text{Normal}(0,5)

observe Normal(x_1,1) y_1

x_2 \sim \text{Normal}(0.5 * x_1,1)

observe Normal(x_2,1) y_2

return x_1
```

Note: A probabilistic program encodes a posterior distribution.

Let's implement this model in WebPPL, a simple PPL you can run in your browser (http://webppl.org).

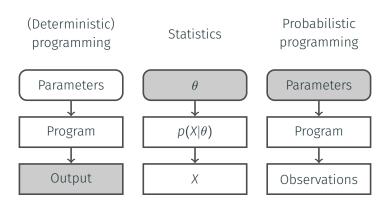
Toy model in WebPPL

```
var model = function() {
   var x1 = sample(Gaussian({mu: 0, sigma: 5}));
   observe(Gaussian({mu: x1, sigma: 1}), 4.78);
  var x2 = sample(Gaussian({mu: 0.5*x1, sigma: 1}));
   observe(Gaussian({mu: x2, sigma: 1}), 3.12);
   return x1;
7 }
var dist = Infer({method: 'SMC', particles: 10000}, model);
viz.auto(dist);
                       0.45 -
                       0.40 -
                       0.35 -
                       0.30 -
                     density
                       0.25
                       0.20
```

(state)

0.15 -0.10 -0.050 -0.0 -

Deterministic programming vs. statistics vs. PPL



Based on a figure by Frank Wood.

Inference

Inference algorithms

Automatic inference is a difficult task.

- Exact inference
 - · Analytical solutions (e.g. Kalman filtering)
 - Enumeration (for discrete models of limited dimension)
- Approximate inference
 - · Monte Carlo inference
 - · Markov chain Monte Carlo (MCMC)
 - Sequential Monte Carlo (SMC)
 - · Hamiltonian Monte Carlo (HMC)
 - · Variational inference

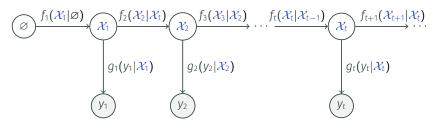
Program state, sampling

Note: We make some simplifications for pedagogical reasons.

Program state: the contents of the memory used by the program to store its data.

Immediate sampling: During execution of a probabilistic program, whenever the program encounters an unobserved random variable (i.e. an assume statement), it immediately samples its value from the distribution associated with it.

Graphical model of the execution



 \mathcal{X}_i denotes the state at the *i*-th observe statement.

$$p(\mathcal{X}_{1:T}, y_{1:T}) = \prod_{t=1}^{T} f_t(\mathcal{X}_t | \mathcal{X}_{t-1}) g_t(y_t | \mathcal{X}_t),$$

where $\mathcal{X}_0 = \emptyset$. We are interested in the posterior probability

$$p(\mathcal{X}_{1:T}|y_{1:T}) = \frac{p(\mathcal{X}_{1:T}, y_{1:T})}{p(y_{1:T})} \propto p(\mathcal{X}_{1:T}, y_{1:T}).$$

Importance sampling I

We can use importance sampling (IS) to sample from $p(X_{1:T}|y_{1:T})$.

Proposal distribution:

$$q(\mathcal{X}_{1:T}) = \prod_{t=1}^{T} f_t(\mathcal{X}_t | \mathcal{X}_{t-1}).$$

The importance weight:

$$w(\mathcal{X}_{1:T}) = \prod_{t=1}^{T} g_t(y_t|\mathcal{X}_t).$$

Exercise

How can we sample from $f_t(\mathcal{X}_t|\mathcal{X}_{t-1})$?

How can we calculate $g_t(y_t|\mathcal{X}_t)$?

Importance sampling II

Run the program forward with the following handling of probabilistic statements (checkpoints):

- assume: sample a value of the random variable (immediate sampling)
- observe: update the weight by multiplying it with the likelihood of the observed value w.r.t. its distribution and parameters (calculated during the execution).

```
var model = function() {
  var x1 = sample(Gaussian({mu: 0, sigma: 5}));
  observe(Gaussian({mu: x1, sigma: 1}), 4.78);
  var x2 = sample(Gaussian({mu: 0.5*x1, sigma: 1}));
  observe(Gaussian({mu: x2, sigma: 1}), 3.12);
  return x1;
}

w ← 1(initial weight)
```

```
var model = function() {

var x1 = sample(Gaussian({mu: 0, sigma: 5}));

observe(Gaussian({mu: x1, sigma: 1}), 4.78);

var x2 = sample(Gaussian({mu: 0.5*x1, sigma: 1}));

observe(Gaussian({mu: x2, sigma: 1}), 3.12);

return x1;

}

Sampling x_1 from \mathcal{N}(0, 5^2): x_1 \leftarrow 4.1
```

```
var model = function() {
  var x1 = sample(Gaussian({mu: 0, sigma: 5}));
  observe(Gaussian({mu: x1, sigma: 1}), 4.78);

var x2 = sample(Gaussian({mu: 0.5*x1, sigma: 1}));
  observe(Gaussian({mu: x2, sigma: 1}), 3.12);
  return x1;
}

W \leftarrow W * \mathcal{N}(4.78 \mid 4.1,1) = 0.3166
```

```
var model = function() {
var x1 = sample(Gaussian({mu: 0, sigma: 5}));
observe(Gaussian({mu: x1, sigma: 1}), 4.78);
var x2 = sample(Gaussian({mu: 0.5*x1, sigma: 1}));
observe(Gaussian({mu: x2, sigma: 1}), 3.12);
return x1;
}
Sampling x_2 from \mathcal{N}(2.05, 1): x_2 \leftarrow 2.7
```

```
var model = function() {
  var x1 = sample(Gaussian({mu: 0, sigma: 5}));
  observe(Gaussian({mu: x1, sigma: 1}), 4.78);
  var x2 = sample(Gaussian({mu: 0.5*x1, sigma: 1}));
  observe(Gaussian({mu: x2, sigma: 1}), 3.12);
  return x1;
}

w \leftarrow w \times \mathcal{N}(3.12 \ | 2.7, 1) = w \times 0.3653 = 0.1156
```

```
var model = function() {
var x1 = sample(Gaussian({mu: 0, sigma: 5}));
observe(Gaussian({mu: x1, sigma: 1}), 4.78);
var x2 = sample(Gaussian({mu: 0.5*x1, sigma: 1}));
observe(Gaussian({mu: x2, sigma: 1}), 3.12);
return x1;
}
```

Returned value 4.1, weight 0.1156

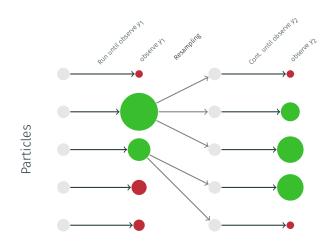
SMC I

Recall the disadvantages of importance sampling.

Better idea is to use SMC methods.

Bootstrap particle filter

- Start a set of N parallel executions (particles) of the program.
- · Repeat:
 - Run each particle until the next observe statement (incl. the weight calculation) and pause the execution.
 - Resample the particles and resume execution.



Examples of PPLs

There already exist quite a few PPLs today with different programming paradigms, for example:

- · Functional: Anglican and Venture
- · Imperative: Probabilistic C, Turing, Stan, Edward and Pyro
- · Object-oriented: **Birch** (with delayed sampling)

Want to learn more?

Noah D. Goodman and Andreas Stuhlmüller.

The design and implementation of probabilistic programming languages.

Retrieved 2019-8-29 from http://dippl.org

Jan-Willem van de Meent et al.

An introduction to probabilistic programming.

arXiv preprint arXiv:1809.10756, 2018.

Lawrence M. Murray and Thomas B. Schön.

Automated learning with a probabilistic programming language: Birch.

Annual Reviews in Control, 2018.